This is the second in a series of articles exploring topics that will be addressed at the HPLC 2020 conference in San Diego, from June 20 to 25.
This is the second in a series of articles exploring hot topics in high performance liquid chromatography (HPLC). Although originally planned as a preview of the HPLC 2020 conference, which has been postponed to June 2020, the series provides insights into important developments in the technique.
Theory predicts we are still more than two orders of magnitude away from the ultimate speed limits of liquid chromatography. What approaches can lead us to reach that ultimate speed?
With the first reports on what is known today as high pressure liquid chromatography (HPLC) dating back t0 1966 (1), and with the “HPLC“ acronym that we use so often in our daily professional conversations being coined exactly 50 years ago by Csaba Horvath, we can look back on history of more than 50 years of developments in this technique. The progress made has been truly impressive. Whereas 50 years ago an analysis with a resolution of n = 1000 plates took up to half an hour, a fully optimized system today can easily produce 100,000 plates in the same time-a gain of two orders of magnitude. The gain in analysis speed is even more remarkable; for example, the time needed to produce 30,000 theoretical plates has even been decreased by three orders of magnitude over the same period.
Thinking about how chromatography will evolve in the next 50 years, it is clear that progress will be much slower. However, if we could abandon the packed bed of spheres, theory predicts we are still more than two orders of magnitude away from the ultimate speed limits of liquid chromatography. The requirements to realize that speed are formidable but not entirely unfeasible. What would be needed is a material that can combine a more open packing structure with geometrical feature sizes equal to or smaller than those found in the current 2-mm-particle packed bed columns, while at the same time the structure retains sufficient mechanical strength and maintains a maximal degree of uniformity and structural repetition throughout the entire body.
Thinking today of a technology eventually capable of producing such a material, today’s top candidate appears to be three-dimensional (3D) printing. This technology is undergoing immense revolutions and already has myriad commercial applications in the broadest range of possible domains. However, diverse different approaches to 3D-printing technology exist, and these come in a very broad range of capabilities and performance characteristics in terms of resolution, printing material, writing speed, and cost. Very few of them can deliver the resolution needed to compete with the sub-micrometer sizes governing our current state-of-the-art packed bed columns (the flow-through pores in a 2-mm-particle packed bed column are roughly 0.6 to 0.7 mm wide). In fact, it seems that two-photon polymerization is the only technique capable of achieving such resolution, albeit at the expense of a very slow printing speed.
In my contribution at the upcoming HPLC 2020 conference, I will report on the possibilities, limitations, and challenges of two-photon polymerization printing to produce chromatographic media for analytical chromatography. For it is not only printing speed that matters; there are also critical issues involved in removing the unpolymerized printing resin, creating a sufficient retention surface in a mesopore space with appropriate pore sizes, providing a pressure-tight enclosure around the printed structure, and finding materials that are compatible with the mobile phases used in liquid chromatography. The latter is the consequence of the fact that two-photon polymerization is currently still limited to a few organic polymers (at best allowing for some inorganic residues) such that direct 3D printing of mesoporous silica materials is still a far dream. To put the possibilities in perspective, they will be compared to the current possibilities offered by silicon micromachining. This approach produces ordered 2D beds with configurable through-pore size, commonly known as micropillar array columns. New designs and production technologies are now also on the verge of bringing substantial improvements in this area as well. Last but not least, we will also discuss the possibilities of alternative 3D-printing approaches, in which the material is not constructed nano-pixel by nano-pixel, but rather entire layers of silica particles are deposited one by one on top of each other in a perfectly ordered and regular manner.
Reference
(1). C.G. Horvath and S.R. Lipsky, Nature211, 748–749 (1966).
Gert Desmet is the head of the Department of Chemical Engineering at the Vrije Universiteit Brussel, in Brussels, Belgium. Direct correspondence to gedesmet@vub.be.
Measuring Procyanidin Concentration in Wines Using UHPLC
January 24th 2025Researchers from the University of Bordeaux (Villenave d'Ornon, France) report the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high performance liquid chromatography (UHPLC) coupled with a ultra-high performance liquid chromatography (Q-TOF) mass spectrometer.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.