A recent lipidomic study explored how 3-methyl-1-p-tolytriazene (MTT) can be an alternative solution when conducting quantitative phospholipid (PL) methylation.
A recent study out of McMaster University in Canada advances lipidomic research by introducing a new approach that aids our understanding of the human lipidome. Lead author Philip Britz-McKibbin and collaborators introduced a derivatization protocol utilizing 3-methyl-1-p-tolyltriazene (MTT), heralding a safer and highly efficient alternative to diazomethane for quantitative phospholipid (PL) methylation (1). Their findings were published in Analytical Chemistry, and they reveal how the new protocol advances capillary electrophoresis–mass spectrometry (CE-MS) capabilities beyond aqueous buffer conditions.
Orthogonal separation techniques coupled with high-resolution MS (HRMS) have become essential in navigating the complexities inherent in the human lipidome (1). Despite this, electrophoretic separations have remained largely overlooked in contemporary lipidomics. However, the innovative MTT-based protocol, integrated with multisegment injection–nonaqueous capillary electrophoresis–mass spectrometry (MSI-NACE-MS), promises a paradigm shift (1).
This novel charge-switch derivatization strategy ensures expanded lipidome coverage, particularly benefiting zwitterionic PLs analyzed as cationic phosphate methyl esters. By mitigating isobaric interferences and ion suppression effects, the approach enhances resolution, sensitivity, and throughput, reducing analysis time to approximately 3.5 minutes per sample (1).
Validation of this method involved the analysis of methyl-tert-butyl ether extracts from reference human plasma. Notably, it facilitated a direct comparison of 48 phosphatidylcholine and 27 sphingomyelin species, aligning with findings from an interlaboratory lipidomics harmonization study (1). Moreover, the team demonstrated the potential for plasma PL quantification using NIST SRM-1950 via relative response factor estimation based on reported consensus concentrations (1).
Britz-McKibbin's team fortified their lipid identification by modeling predictable changes in the electrophoretic mobility for cationic PLs in tandem with MS/MS, bolstering the credibility and accuracy of the method (1).
With its enhanced efficiency and safety, this methodology is designed to further aid lipidomic research now and in the future. Proper use of this methodology can help contribute to new discoveries about lipids within the human body.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Ly, R.; Torres, L. C.; Ly, N.; Britz-McKibbin, P.Expanding Lipidomic Coverage in Multisegment Injection–Nonaqueous Capillary Electrophoresis–Mass Spectrometry via a Convenient and Quantitative Methylation Strategy. Anal. Chem. 2023, 95 (48), 17513–17524. DOI: 10.1021/acs.analchem.3c02605
Inside the Laboratory: The Stone Laboratory Group at the University of Iowa
September 13th 2024In this edition of “Inside the Laboratory,” Betsy Stone, PhD, a professor of chemistry at the University of Iowa, discusses her group’s current research endeavors, including developing a new liquid chromatography–mass spectrometry (LC–MS) method to track secondary organic aerosol that forms in the atmosphere from D5.
Modern HPLC Strategies: Improving Retention and Peak Shape for Basic Analytes
August 16th 2024In high-performance liquid chromatography (HPLC), it is common for bases and unreacted ionized silanols on silica-based columns to cause irreproducible retention, broad peaks, and peak tailing when working with basic analytes. David S. Bell, Lead Consultant at ASKkPrime LLC offers innovative HPLC strategies that can help mitigate such issues.
Detangling the Complex Web of GC×GC Method Development to Support New Users
September 12th 2024The introduction of comprehensive two-dimensional gas chromatography (GC×GC) to the sample screening toolbox has substantially increased the ability to comprehensively characterize complex mixtures. However, for many gas chromatography (GC) users, the thought of having to learn to develop methods on a new technology is daunting. Developing a basic GC×GC method for most (nonspecialized) applications can be accomplished in minimal time and effort given parameter suggestions and ranges to target analytes in a sample of interest. In this article, the authors work describe a simple workflow to develop a GC×GC method for a specific sample upon initial use, with the aim of decreasing the time to accomplish functional workflows for new users.