A new method of extracting and analyzing polycyclic aromatic hydrocarbons (PAHs) from water and fish samples has been created.
In a recent study published in the Journal of Chromatography A, researchers from the Institute of Agricultural Quality Standards and Testing Technology Research presented a method capable of extracting and analyzing polycyclic aromatic hydrocarbons (PAHs) from water and fish samples (1). The technique introduces naphthalene-modified magnetic nanoparticles (Fe3O4@Nap) that improve the precision, sensitivity, and simplicity of the extraction process (1).
Fishing trophy - big freshwater perch in water on green background. | Image Credit: © Medard - stock.adobe.com
For this study, a new one-step surface modification protocol was deployed. Naphthalene-6-phosphate was directly immobilized onto the Fe3O4 nanoparticles, harnessing the specific chelation interaction between phosphate groups and metal ions on the Fe3O4 surface. The authors used this approach to yield nanoparticles with hydrophobicity and π-π conjugative effects. As a result, the nanoparticles were highly effective in capturing PAHs.
Under optimized conditions, the Fe3O4@Nap-based MSPE/gas chromatography–tandem mass spectrometry (MSPE/GC–MS/MS) method displayed linearity, precision, and accuracy for both water and fish samples. It was also an inexpensive alternative to traditional solid-phase extraction (SPE) materials because of the cost of the raw materials for the Fe3O4@Nap nanoparticles (1). This new method allows for large-scale production, making it more applicable to an industry setting.
Compared to other reported techniques, this approach also reduced the time required for sample preparation, making it an attractive option for PAH detection in environmental water and fish samples (1). The method offers an alternative solution that can help scientists and government agencies safeguard the environment and improve public health.
(1) Peng, X.; Liu, L.; Hu, X.; et al. Facile Fabrication of Naphthalene-Functionalized Magnetic Nanoparticles for Efficient Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Water and Fish Samples. J. Chromatogr. A 2023, 1706, 464229. DOI: 10.1016/j.chroma.2023.464229
New Study Reviews Chromatography Methods for Flavonoid Analysis
April 21st 2025Flavonoids are widely used metabolites that carry out various functions in different industries, such as food and cosmetics. Detecting, separating, and quantifying them in fruit species can be a complicated process.
Analytical Challenges in Measuring Migration from Food Contact Materials
November 2nd 2015Food contact materials contain low molecular weight additives and processing aids which can migrate into foods leading to trace levels of contamination. Food safety is ensured through regulations, comprising compositional controls and migration limits, which present a significant analytical challenge to the food industry to ensure compliance and demonstrate due diligence. Of the various analytical approaches, LC-MS/MS has proved to be an essential tool in monitoring migration of target compounds into foods, and more sophisticated approaches such as LC-high resolution MS (Orbitrap) are being increasingly used for untargeted analysis to monitor non-intentionally added substances. This podcast will provide an overview to this area, illustrated with various applications showing current approaches being employed.
University of Rouen-Normandy Scientists Explore Eco-Friendly Sampling Approach for GC-HRMS
April 17th 2025Root exudates—substances secreted by living plant roots—are challenging to sample, as they are typically extracted using artificial devices and can vary widely in both quantity and composition across plant species.
Sorbonne Researchers Develop Miniaturized GC Detector for VOC Analysis
April 16th 2025A team of scientists from the Paris university developed and optimized MAVERIC, a miniaturized and autonomous gas chromatography (GC) system coupled to a nano-gravimetric detector (NGD) based on a NEMS (nano-electromechanical-system) resonator.