Researchers have successfully extracted proteins from 600000 year old mammoth bones, using a technique that could be used to identify remains of very old extinct animals from tiny bones fragments.
Researchers have successfully extracted proteins from 600 000 year old mammoth bones, using a technique that could be used to identify remains of very old extinct animals from tiny bones fragments.
The West Runton Elephant is one of the most complete Steppe Mammoth skeletons in the world. Samples from the bones were used in a study by from the universities of York and Manchester into peptide sequencing mammoths and mastodons, published in Geochimica et Cosmochimica Acta.1
In the study, near-complete collagen sequences of mammoths, mastodons and elephants are proposed based upon available elephant genomic data and supported with LC–MALDI-MS–MS and LC–ESI-MS–MS analyses of collagen digest. Mammoth fossils were analysed to investigate the use of peptide mass spectrometry for fossil identification. Despite the age of the fossils, sufficient peptides were obtained to identify them as elephantid, and sufficient sequence variation was available to discriminate between elephantid and mammutid collagens.
Bio-archaeologist Professor Matthew Collins, from the University of York’s Department of Archaeology, said, “The time depth is absolutely remarkable. We believe protein lasts in a useful form ten times as long as DNA, which is normally only useful in discoveries of up to 100 000 years old in Northern Europe. The implications are that we can use collagen sequencing to look at very old extinct animals. It also means we can look through old sites and identify remains from tiny fragments of bone.”
1. M. Buckley, N. Larkin and M. Collins, Geochim. Cosmochim. Acta, 75(7), 2007–2016 (2011).
This story originally appeared in The Column. Click here to view that issue.
Modern HPLC Strategies: Improving Retention and Peak Shape for Basic Analytes
August 16th 2024In high-performance liquid chromatography (HPLC), it is common for bases and unreacted ionized silanols on silica-based columns to cause irreproducible retention, broad peaks, and peak tailing when working with basic analytes. David S. Bell, Lead Consultant at ASKkPrime LLC offers innovative HPLC strategies that can help mitigate such issues.
Reliable Separation and Efficient Group-type Quantitation of Total Petroleum Hydrocarbons (TPHs)
September 11th 2024Petroleum contamination from leaking underground storage tanks, for example, is a significant concern for both the environment and human health. Thorough characterization of the contamination is required to form appropriate risk assessments and remediation strategies, but until now, the determination of total petroleum hydrocarbons (TPHs) in soil has typically involved a convoluted and labour-intensive process. In this article, the analysis of TPH in environmental media is simplified using flow-modulated GC×GC–FID with quantitation based on pre-defined compound groupings. This approach overcomes the drawbacks of conventional solvent fractionation approaches, by eliminating the need for sample fractionation and automating data processing workflows.
The Reality Behind Column Insertion Distance
September 10th 2024Column insertion distance is critical to good chromatography. What happens if the column is installed too low in the injection port? Is insertion distance more important when performing split injection or splitless injection? Does the position of the column in the injection port impact reproducibility?