Andrew Coffey

Articles by Andrew Coffey

Microscopic illustration of DNA double helix structure, highlighting gene silencing techniques with RNA interference, CRISPR-Cas9, and antisense oligonucleotides, for genetic research applications. | Image Credit: © john - stock.adobe.com

Hydrophilic interaction chromatography–mass spectrometry (HILIC-MS) offers a flexible and efficient alternative to ion-pairing reversed-phase liquid chromatography (IP-RPLC) for oligonucleotide analysis, with column selectivity and mobile phase pH being key factors in optimizing retention and detection.

FIgure 1 L.png

Size-exclusion chromatography (SEC) is a mainstay in the biopharmaceutical industry, serving as a gold standard analytical tool for the characterization of therapeutic proteins in development and manufacturing settings. Contemporary SEC separations can be performed using columns packed with sub-2-μm particles, and these platforms offer the highest efficiencies available for the separation of monoclonal antibody monomer species from low- and high-molecular-weight product-related impurities. Compared to other chromatographic modes used to characterize proteins, SEC is unique in that analytes are not retained by the stationary phase. As a result, special care is required to achieve in practice the chromatographic efficiency that is expected in theory. In this article, we describe the fundamental aspects of achieving high performance using sub-2-μm SEC columns. In addition, we discuss trends in the biopharmaceutical industry, including challenges that can be addressed using modern size-exclusion technologies.