Michael E. Swartz

INTRODUCING A NEW WEB SEMINAR SERIES ON UHPLC
Sub-Two-µm Particle UHPLC: Fulfilling the Promise of Fast LC


To register, visit http://medconference.net/particleUHPLC

Articles by Michael E. Swartz

 Volume 33 Number 4Pages 234-247This is our annual review of new liquid chromatography (LC) columns and accessories introduced at Pittcon and throughout the previous year. This year, Michael Swartz, former author of our "Innovations in HPLC" and "Validation Viewpoint" columns, steps in as a guest columnist to write the review.

i1-719052-1416910893222.jpg

New chromatography technology for the analytical laboratory is being driven by the ever expanding need and challenge to get more and better information faster, all in an economic climate where cost control is a primary concern. At the same time, samples have become more and more complex, detection limits are being driven increasingly lower, and regulatory concerns, particularly for biotherapeutics, are being increasingly scrutinized.

i1-592232-1408674718415.jpg

During the last four to five years, chromatographers have witnessed some significant advances in technology, from the instrument perspective, with systems operating up to 15,000 psi using new and significantly improved detectors, sometimes operating in multiple dimensions, and from the column perspective, with smaller particle sizes and new chemistries and configurations.

i9_t-592237-1417781374466.gif

Over the past several years, charged aerosol detection (CAD) has become a widely used technology in the pharmaceutical laboratory. From formulation to stability and even quality control, many analysts are turning to this technology due to its advantages of sensitivity, ease of use, dynamic range, and applicability to a wide range of analyses in the drug development process. In this article, we will examine the operation and use of CAD in a regulated environment, briefly address method development and validation specifics, and highlight a few examples illustrating some of its advantages when used in the pharmaceutical laboratory.

i4-447626-1417780249233.jpg

One issue that has become clear to us throughout courses, workshops, seminars, and various talks on the subject of method validation, is that while many people talk the language, sometimes the individual method validation terms mean different things to different people. While the actual protocols, or experimental details used to measure or evaluate method validation can vary, it's a good idea to have a common understanding of the underlying terms. In this month's installment of "Validation Viewpoint," we have compiled glossary of method validation terms as they pertain to chromatography.

I was first acquainted with LCGC in the mid 1980s. Known then as just LC Magazine, it appealed to any graduate student working in the field of chromatography because it was delivered each month free of charge.

November 2006. The objective of a formal method transfer is to ensure that the receiving laboratory is well trained, qualified to run the method in question, and gets the same results - within experimental error - as the initiating laboratory. The development and validation of robust methods and strict adherence to well documented standard operating procedures is the best way to ensure the ultimate success of the method. This installment of "Validation Viewpoint" examines the analytical method transfer process, including protocol, documentation, and some possible chromatographic pitfalls to avoid.

Latest Updated Articles