The Application Notebook-03-01-2007

The Application Notebook

Pesticide contamination of foodstuffs has become a worldwide concern, prompting various levels of regulation and monitoring. Traditionally, pesticides are quantified with gas chromatography (GC) combined with selective detectors (ECD, FID, etc.). Selective GC detectors are great tools to quantify one or two classes at a time. However, screening for a number of different classes of pesticides requires multiple runs utilizing various GC configurations to achieve sufficient chromatographic resolution for unambiguous quantification. Gas chromatography–mass spectrometry (GC–MS) provides positive confirmation of various pesticides in a single analytical run because its superior selectivity allows interference-free quantification even with peak coelution. GC–MS has become a preferred technique for pesticide analysis because of its single-run capability.

The Application Notebook
Medical/Biological

March 02, 2007

The continual increase in sample numbers in busy labs means that it is often difficult for quality control or contract analysis labs to maintain short turnaround times, particularly when instruments are already running at full capacity. To address the need for faster analysis while retaining the quality of separation offered by dedicated amino acid analysers, an improved formulation of sodium citrate based buffers has been developed by Biochrom.

The exploration of myxobacterial metabolite profiles by LC–MS screening for the presence of new natural products is described. Extracts from fermentations of Myxococcus strains are analysed by UPLC-coupled ESI-TOF mass spectrometry and the obtained data are processed using principal component analysis (PCA). The generation of molecular formulae from accurate mass measurements facilitates rapid compound identification.