LCGC Europe-12-01-2016

This article describes a workflow for the analysis of phenolic components in wine enabling confident differential analysis using high performance liquid chromatography (HPLC) in combination with low-field drift-tube ion mobility quadrupole time-of-flight mass spectrometry (IMS-QTOF-MS).

The evaluation of the oral uptake of engineered nanoparticles (ENPs) contained in personal care products like mouthwashes is of great relevance to estimate the potential hazards and the toxicity of engineered nanomaterials (ENMs). Various experiments were performed while two commercially available mouthwash products (named M1 and M2) were selected as samples of interest. Asymmetric flow field‑flow fractionation (AF4) was chosen and optimized as the particle separation technique and two detectors were on-line coupled while dynamic light scattering (DLS) was used for evaluation and signals obtained by ultraviolet–visible (UV–vis) detection at 254 nm were used to gather additional information about the fate of the ENPs.

LCGC Europe
History of Chromatography

December 01, 2016

Keith Bartle, Emeritus Professor of Physical Chemistry and Visiting Professor in the Energy Centre of the University of Leeds, UK, has been a creative catalyst in a wide range of chromatographic collaborations stretching from the analysis of methane in air to printing inks. He spoke to Caroline West from the University of Orléans, in Orléans, France, about his career in chromatography and his proudest scientific achievements in separation science, including his research in supercritical fluid chromatography (SFC), gas chromatography (GC), and “the unified chromatograph”.

LC Troubleshooting
LCGC Europe

December 01, 2016

A reader’s problem of a method that fails the repeatability requirement of the system suitability test serves as an example of how to approach liquid chromatography (LC) method troubleshooting.

The 23rd International Symposium on Separation Sciences (ISSS 2017) will be held from 19–22 September 2017 at the Vienna University of Technology, located in the heart of the historic Vienna city centre in Austria.

Interest in chromatography using hydrophilic interaction liquid chromatography (HILIC) has continued to build in recent years. Adoption of the technique has been slowed by experiences of poor reproducibility. In particular, reequilibration times in HILIC have been reported as being exceptionally long as compared to reversed-phase chromatography. In this study, reequilibration times in HILIC for both aqueous–organic gradients and buffer gradients are systematically explored. The results not only promise to improve method development practices, but also provide insight into HILIC retention mechanisms across mechanistically differing polar stationary phases.

Issue PDF
LCGC Europe

December 01, 2016

Click the title above to open the LCGC Europe December 2016 regular issue, Vol 29, No 12, in an interactive PDF format.