Scientists in Xi’an, China have created a novel system for the analysis of cell membranes, based around haloalkane dehalogenase protein tag (HALO)-tag technology. Their research was published in Talanta.
Cell membrane chromatography (CMC) is effective for studying receptors with multiple transmembrane structures, such as MAS-related G protein-coupled receptor X2 (MrgX2). For CMC to function properly, maintenance must be kept for the complete biological structure of a membrane receptor. However, to obtain more convenient and stable CMC models, this system must be further improved.
For this study, the scientists used HALO-tag technology to create a new MrgX2/CMC model. The fusion receptors of this process were expressed in HEK293 cells, with silica gel being modified for the rapid capture of fusion receptors. This was done via one-step acylation using a substrate of HALO-tag (chloroalkanes). According to the scientists, their new CMC model (MrgX2-HALO-tag/CMC model) was quicker to prepare, more stable, and had a longer lifespan than previous MrgX2-SNAP-tag/CMC models.
Combined with a high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) system, the new model was used to identify bioactive components in traditional Chinese medicine. Sanggenon C and morusin were identified as anti-pseudo-allergic components. The MrgX2-HALO-tag/CMC model was also used to analyze ligand-receptor interaction. According to the system, the affinity order of four discovered ligands was desipramine < imipramine < amitriptyline < clomipramine. When compared to the results obtained using the MrgX2-HALO-tag/CMC model alone, the results proved consistent (1).
(1) Jia, Q.; Lv, Y.; Miao, C.; Feng, J.; Ding, Y.; Zhou, T.; Han, S.; He, L. A New MAS-Related G Protein-Coupled Receptor X2 Cell Membrane Chromatography Analysis Model Based on (HALO-Tag) Technology and Its Applications. Talanta 2023, 268 (1), 125317. DOI: 10.1016/j.talanta.2023.125317
Navigating the Impact of Funding Cuts: Voices from the Research Community
July 9th 2025Shifts in U.S. federal science funding—driven by the newly established Department of Government Efficiency (DOGE)—are causing delays, uncertainty, and program changes across academic and regulatory research institutions.
FDA Grants Breakthrough Status to AI-Enhanced GC-MS Device for Bladder Cancer Detection
July 1st 2025A new cancer detection test to analyze volatile organic compounds through urine analysis, was granted the Breakthrough Device Designation status by the U.S. FDA. The system, which is built on gas chromatography–mass spectrometry (GC–MS) and proprietary AI, generates real-time cancer risk scores.