LCGC Asia Pacific
Knauer Application Note
There is an increasing public interest in the analysis of aromatic amines since this class of organic compounds includes many carcinogenic substances.
In recent years other sources of aromatic amines apart from tobacco smoke have gained more and more interest, for example, azo dyes (1). Therefore a fast and reliable method for the determination of aromatic amines in dyes like printer ink was developed. Five primary aromatic amines (PAAs) (aniline, 2-anisidine, 3-chloro-4methoxyanline, 2,4-dimethylaniline, o-toluidine) were chosen for this demonstration.
The mass spectra of single compound standards are shown in Figure 1. The resulting m/z values manifest the fragmentation patterns of the PAAs. For every PAA the highest intensity was detected for the single charged quasi molecule ion [M+H]+. Therefore this mass was chosen for quantification in all cases.
Figure 1: Mass spectra of single standard.
With the calibrated m/z values the extracts of two printer inks were analysed in order to determine PAA composition and concentrations of these five PAAs.
Samples were prepared as cold water extracts according to EN 645:1993 from printed paper.
This application was performed on a PLATINblue binary high pressure gradient UHPLC system equipped with degasser, autosampler, column thermostat and MSQ Plus mass detector.
UHPLC Parameters: Column: BlueOrchid 175–1.8 C18, 100 x 2 mm i.d.; Eluent A: water + 0.1% formic acid; Eluent B: methanol + 0.1% formic acid; Gradient: yes (details on request); Flow rate: 0.2 mL/min; Injection volume: 50 µL; Column temperature: 40 °C
MS Detection Parameters: Ionization mode: ESI, positive mode; Needle voltage: 1 kV; Cone voltage: 20 V; Probe temperature: 200 °C
Figure 2: SIC scans of two printer inks (P1 + P2) after sample preparation.
The UHPLC-ESI-MS method presented in this application demonstrates the fast and simultaneous separation, qualification and quantification of five PAAs usually found in printer ink. The limit of detection was in the range between 1 to 5 µg/L (S/N = 3). Only 7 min are required for the analysis of one sample, including a washing step and re-equilibration of the column. Therefore the method is well-suited for routine analyses. Due to the fast separation and low eluent flow rate of this method, only about 1.5 mL of eluent and less than 1 mL of methanol are needed for one run. Thus this method is both economical and environmentally acceptable.
(1) M.J. Zeilmaker, H.J van Kranen, M.P. van Veen and J. Janus, Cancer risk assessment of azo dyes and aromatic amines from tattoo bands, folders of paper, toys, bed clothes, watch straps and ink. Rijksinstituut voor Volksgezondheid en Milieu RIVM, 22-Feb-2000.
KNAUER
Wissenschaftliche Gerätebau Dr. Ing. Herbert Knauer GmbH,
Hegauer Weg 38, 14163 Berlin, Germany
tel: +49 30 809727 0 fax: +49 30 801501 0
E-mail: info@knauer.net Website: www.knauer.net
Modern HPLC Strategies: Improving Retention and Peak Shape for Basic Analytes
August 16th 2024In high-performance liquid chromatography (HPLC), it is common for bases and unreacted ionized silanols on silica-based columns to cause irreproducible retention, broad peaks, and peak tailing when working with basic analytes. David S. Bell, Lead Consultant at ASKkPrime LLC offers innovative HPLC strategies that can help mitigate such issues.
Characterizing Cooked Cheese Flavor with Gas Chromatography
September 19th 2024A joint study by the Department of Food and Nutritional Sciences at the University of Reading and Synergy Flavours aimed to identify volatiles that contribute to the aroma of cooked cheese, including the role of fat content in development during cooking.