The Application Notebook
UCT, LLC
Xiaoyan Wang, UCT, LLC
This application note outlines a simple method for the rapid determination of pesticide residues in marijuana and tea leaves. Dry samples are hydrated with water followed by QuEChERS extraction and dispersive solid-phase extraction (dSPE) cleanup using UCT's ChloroFiltr®, a specially designed sorbent to selectively remove chlorophyll without affecting the recovery of planar pesticides which can occur when carbon is used for dSPE cleanup. Chlorophyll removal is important as it can adversely impact gas chromatographic (GC) or liquid chromatographic (LC) injector and detection systems.
Extraction and Cleanup Materials
1) Weigh 2 g of homogenized tea or marijuana sample into 50 mL centrifuge tubes (RFV0050CT).
2) Hydrate the samples by adding 10 mL of reagent water to the tubes and mix at a low speed for 1 h with a horizontal shaker.
3) Add internal standard to all samples.
4) For fortified samples, add appropriate volumes of pesticide standard solution.
5) Add 10 mL of acetonitrile and vortex for 1 min.
6) Add contents of Mylar pouch (ECQUUS2-MP) to each tube and shake vigorously for 1 min.
7) Centrifuge the samples at 3830 rcf for 5 min.
Figure 1: Extracts (a) before and (b) after dSPE cleanup.
1) Transfer 1 mL supernatant into a 2-mL dSPE tube (CUMPSGG2CT).
2) Vortex for 30 s.
3) Centrifuge at 15,300 rcf for 5 min.
4) Transfer 0.3 mL of the purified extract into a 2-mL auto-sampler vial.
5) Add 0.3 mL of reagent water, vortex, and then filter using a 0.45 μm syringe filter.
6) The samples are ready for LC–MS–MS analysis.
Table 1: Accuracy and precision data for fortified tea samples.
As described, this is a simple, fast, and cost-effective method for the determination of pesticide residues in tea and marijuana samples. After hydrating the samples, pesticide residues were extracted using a non-buffered QuEChERS approach, followed by dSPE cleanup using MgSO4 for water removal; primary secondary amine (PSA) for removing organic acids, sugars, and some pigments; and ChloroFiltr® to selectively remove chlorophyll. The result is a clean extract for LC–MS–MS analysis. Good accuracy and precision were obtained using this method.
UCT, LLC
2731 Bartram Road, Bristol, Pennsylvania 19007, USA
Tel: (215) 781 9255
Email: methods@unitedchem.com
Website: www.unitedchem.com
Obtaining Allicin from Garlic with High-Speed Counter Current Chromatography
February 14th 2025High-speed counter current chromatography (HSCCC), an advanced liquid-liquid chromatography technique employing both a liquid stationary phase and a liquid mobile phase (effectively eliminating irreversible adsorption), was used to harvest allicin from garlic.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
Identifying Microplastics in Tap Water with Py-GC/MS
February 12th 2025A pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) methodology has been specifically developed for the identification and quantification of seven polymers commonly found in tap water. The researchers responsible for the approach state that it prioritizes both time and cost efficiency without compromising the thoroughness of marker spectrum detection and confirmation.