Special Issues
The analysis of chiral pesticide is needed to improve risk assessment and establish, in some cases, the justification for production of single- or enriched-enantiomer products. Chiral pesticides are commonly used throughout the agriculture industry and their very chiral nature can lead to enantioselectivities in their mechanisms of action. These differences can also impact their efficacies, toxicities, degradation rates, and persistence in the environment.
This report illustrates good suitability of Regis' chiral columns for analysis of chiral pesticides (Figure 1). While chiral HPLC is a traditional, analytical technique that is performed for this analysis, we report good results using SFC (supercritical fluid chromatography) analysis. SFC is a technique that allows for fast and efficient separations of non-chiral and chiral compounds. It is known for its lower environmental impact, unlike its classical counterpart, liquid chromatography, and therefore could be advantageous.
SFC analysis was performed on the Waters Investigator SFC System. Regis chiral columns - RegisPack, RegisCell, and Whelk-O1 (25 cm × 4.6 mm, 5 µm) - were utilized for method development as the analytical columns.
Chiral separations of commonly used chiral corn pesticides using SFC are reported. Screening was done on chiral columns with various solvent conditions. A set of complementary chiral columns and method development was necessary to achieve selectivity for different compounds. While good results are reported for enantiomeric mixtures, results varied for mixtures of diastereomers and still require further improvement (Figure 2). Compared with traditional HPLC chiral methods, the SFC chiral analyses are usually more efficient. This means methods are faster with good selectivity making SFC the technique of choice.
Regis Technologies, Inc.
8210 Austin Ave., Morton Grove, IL 60053
tel. (847) 583-7661, fax (847) 967-1214
Website: www.registech.com/chromatography
Investigating the Protective Effects of Frankincense Oil on Wound Healing with GC–MS
April 2nd 2025Frankincense essential oil is known for its anti-inflammatory, antioxidant, and therapeutic properties. A recent study investigated the protective effects of the oil in an excision wound model in rats, focusing on oxidative stress reduction, inflammatory cytokine modulation, and caspase-3 regulation; chemical composition of the oil was analyzed using gas chromatography–mass spectrometry (GC–MS).
Evaluating Natural Preservatives for Meat Products with Gas and Liquid Chromatography
April 1st 2025A study in Food Science & Nutrition evaluated the antioxidant and preservative effects of Epilobium angustifolium extract on beef burgers, finding that the extract influenced physicochemical properties, color stability, and lipid oxidation, with higher concentrations showing a prooxidant effect.
Rethinking Chromatography Workflows with AI and Machine Learning
April 1st 2025Interest in applying artificial intelligence (AI) and machine learning (ML) to chromatography is greater than ever. In this article, we discuss data-related barriers to accomplishing this goal and how rethinking chromatography data systems can overcome them.