By using a metabolomic approach, a group of researchers have described some key differences between stem cells and mature cells as well as metabolites associated with the transition between the two.
As stem cells mature they change to form all the different cells that our bodies use. Control of this process could give doctors the tools to meet the needs of many patients with terrible conditions, such as Parkinson’s disease and spinal injuries. By using a metabolomic approach, a group of researchers have described some key differences between stem cells and mature cells as well as metabolites associated with the transition between the two.
Published in the on-line edition of Nature Chemical Biology,1 the study used LC–MS to analyse the stem cells’ metabolome and found 60 previously unidentified metabolites associated with the cell progression. “The study reveals an astounding cellular strategy,” commented Oscar Yanes, one of the researchers. “The capacity of embryonic stem cells to generate a whole spectrum of cell types characteristic of different tissues is mirrored at the metabolic level.”
The team suggests that the stem cells’ metabolome allows them to react to in vivo oxidative processes such as inflammation. Supporting this theory, the researchers found that by chemically blocking the oxidative processes, they were able to prevent stem cells’ normal progress into mature heart and nerve cells. Conversely, when specific oxidized metabolites were introduced downstream into the culture, stem cell differentiation was promoted.
1O. Yanes, Nature Chemical Biology, on-line 2 May 2010.
This story originally appeared in The Column. Click here to view that issue.
Modern HPLC Strategies: Improving Retention and Peak Shape for Basic Analytes
August 16th 2024In high-performance liquid chromatography (HPLC), it is common for bases and unreacted ionized silanols on silica-based columns to cause irreproducible retention, broad peaks, and peak tailing when working with basic analytes. David S. Bell, Lead Consultant at ASKkPrime LLC offers innovative HPLC strategies that can help mitigate such issues.
Reliable Separation and Efficient Group-type Quantitation of Total Petroleum Hydrocarbons (TPHs)
September 11th 2024Petroleum contamination from leaking underground storage tanks, for example, is a significant concern for both the environment and human health. Thorough characterization of the contamination is required to form appropriate risk assessments and remediation strategies, but until now, the determination of total petroleum hydrocarbons (TPHs) in soil has typically involved a convoluted and labour-intensive process. In this article, the analysis of TPH in environmental media is simplified using flow-modulated GC×GC–FID with quantitation based on pre-defined compound groupings. This approach overcomes the drawbacks of conventional solvent fractionation approaches, by eliminating the need for sample fractionation and automating data processing workflows.
The Reality Behind Column Insertion Distance
September 10th 2024Column insertion distance is critical to good chromatography. What happens if the column is installed too low in the injection port? Is insertion distance more important when performing split injection or splitless injection? Does the position of the column in the injection port impact reproducibility?