Prediction systems for chromatographic retention times.
Chromatographic method development is a significant challenge in analytical chemistry. The chromatographer is asked to find an appropriate compromise between the often conflicting goals of resolution, robustness and run time. The problem of method development is typically divided into two stages. The first stage is the determination of the basic system on which development will proceed (type of chromatography, column choice etc.). The second stage is the optimization of continuous parameters (especially gradient and temperature) within that method space.
Traditionally, the first selection stage is based on a combination of the experience of the method development chromatographer and a limited number of screening experiments. The second stage is usually based on systematic optimization, commonly with software modelling. Software tools for optimization of separations have matured to the point where their use has become commonplace. More recently, software has also begun to be applied to the first stage of method development enabling chromatographers to select more suitable systems for optimization based on characteristics of the compounds of interest rather than by trial-and-error. However, there are many cases where systematic screening is impractical, especially when a method is not intended to become an organizational asset but rather will only be applied a few times. In these cases, the objective is usually to find an adequate method as fast as possible. When some or all of the chemical structures in the mixture are known with a high degree of confidence, it is feasible to perform selection between several “generic” methods based on chemical structures. This article will describe a new system for fast, effective selection between generic methods based on retention time prediction.
Modern HPLC Strategies: Improving Retention and Peak Shape for Basic Analytes
August 16th 2024In high-performance liquid chromatography (HPLC), it is common for bases and unreacted ionized silanols on silica-based columns to cause irreproducible retention, broad peaks, and peak tailing when working with basic analytes. David S. Bell, Lead Consultant at ASKkPrime LLC offers innovative HPLC strategies that can help mitigate such issues.
Reliable Separation and Efficient Group-type Quantitation of Total Petroleum Hydrocarbons (TPHs)
September 11th 2024Petroleum contamination from leaking underground storage tanks, for example, is a significant concern for both the environment and human health. Thorough characterization of the contamination is required to form appropriate risk assessments and remediation strategies, but until now, the determination of total petroleum hydrocarbons (TPHs) in soil has typically involved a convoluted and labour-intensive process. In this article, the analysis of TPH in environmental media is simplified using flow-modulated GC×GC–FID with quantitation based on pre-defined compound groupings. This approach overcomes the drawbacks of conventional solvent fractionation approaches, by eliminating the need for sample fractionation and automating data processing workflows.
The Reality Behind Column Insertion Distance
September 10th 2024Column insertion distance is critical to good chromatography. What happens if the column is installed too low in the injection port? Is insertion distance more important when performing split injection or splitless injection? Does the position of the column in the injection port impact reproducibility?