Two alternative approaches based on gas chromatography coupled to tandem mass spectrometry (GC–MS/MS) were developed to control the maximum residue limit of the banned insecticide, ethylene oxide (EtO), and its transformation product, 2-chloroethanol (2-CE).
The challenges that arise during cannabis metabolomics analysis using ultrahigh-performance reversed-phase liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC–reversed-phase–HRMS/MS) are presented.
A simple LC–MS method has been developed and validated for the simultaneous determination of 18 synthetic food additives and caffeine in soft and energy drinks, and in various alcoholic beverages. Nine food colours (tartrazine, sunset yellow FCF, azorubine, ponceau 4R, allura red AC, patent blue V, brilliant blue FCF, green S, brilliant black BN), two preservatives (sorbic and benzoic acid) and seven sweeteners (acesulfame K, aspartame, cyclamic acid, saccharin, sucralose, neohesperidin DC, neotame) were targeted food additives. The method employs reversed-phase ultra-high performance liquid chromatography (UHPLC) for analyte separation and a single quadrupole mass spectrometer for their detection. The limits of quantification were low enough to enable a reliable control of maximum limits set for some additives (Regulation [EC] No. 1333/2008). The method was applied for analysis of a wide range of samples collected at a typical supermarket: 14 soft drinks, 19 energy drinks, and 43 alcoholic beverages.
A simple ultrahigh-performance liquid chromatography high resolution tandem mass spectrometry (UHPLC−HRMS/MS) method to determine seventeen phytocannabinoids was developed and validated for Cannabis plants, resins and their extracts, and oils. The analysis was challenging because of the complexity of matrices, the large differences in the concentration of phytocannabinoids and their pattern in various cultivars, and the structural similarity of these analytes.
Mycotoxins, toxic secondary metabolites of several fungal species, represent food safety issues of high concern. Deoxynivalenol, the most abundant trichothecene mycotoxin, can be found worldwide as a contaminant of wheat, barley, maize and other cereals (1,2). The transmission of deoxynivalenol from barley into beer has been reported in several studies (3,4). Therefore, its levels should be controlled.
The potential of the time-of-flight mass spectrometry (TOF-MS) to innovate the analysis of soft drinks is described using gas chromatography (GC) hyphenated to TOF-MS and a new type of ion source, direct analysis in real time (DART), coupled to high-resolution TOF-MS. Head-space solid-phase microextraction (SPME) was used to isolate/extract volatile compounds followed by GC–TOF-MS to identify tainted compound in contaminated soft drinks. Direct analysis in real time–time-of-flight mass spectrometry (DART–TOF-MS) was also used to obtain negative and positive ion profiles of different soft drinks to determine the presence of various compounds, including antimicrobial preservatives, artificial sweeteners, acidulants and saccharides, without any sample preparation and chromatographic separation.