Jean-Luc Veuthey | Authors


The Revival of Supercritical Fluid Chromatography in Pharmaceutical Analysis

There has been a great renewal of interest in supercritical fluid chromatography (SFC) as a performing analytical tool for various types of applications recently. SFC is particularly suitable for pharmaceutical analysis, where it is required to have separation methods offering high throughput, elevated efficiency, and, importantly, sensitivity for the determination of drugs in various matrices, such as drug formulation and biological fluids. However, SFC has also been used for other applications, including food analysis, polymer analysis, and environmental analysis, as reported in a recent review.

uHPLC Teaching Assistant: A New Tool for Learning and Teaching Liquid Chromatography, Part 1

The free spreadsheet-based program HPLC Teaching Assistant was developed for effective and innovative learning and teaching of liquid chromatography. This software allows teachers to illustrate the basic principles of high performance liquid chromatography (HPLC) using virtual chromatograms (simulated chromatograms) obtained under various analytical conditions. In the first instalment of this series, we demonstrate the possibilities offered by this spreadsheet to illustrate the concept of chromatographic resolution, including the impact of retention, selectivity, and efficiency; understand the plate height (van Deemter) equation and kinetic performance in HPLC; recognize the importance of analyte lipophilicity (log P) on retention and selectivity in reversed-phase HPLC mode; and manipulate or adapt reversed-phase HPLC retention, taking into account the acido-basic properties (pKa) of compounds and the mobile-phase pH.

HPLC Teaching Assistant: A New Tool for Learning and Teaching Liquid Chromatography, Part II

Part II of this series describes additional features of the HPLC Teaching Assistant software, including the possibility to simulate the impact of the mobile phase temperature on HPLC separations; understand the chromatographic behavior of a mixture of diverse compounds in both isocratic and gradient elution modes; show the influence of instrumentation (injected volume and tubing geometry) on the kinetic performance and sensitivity in HPLC; and demonstrate the impact of analyte molecular weight on thermodynamic (retention and selectivity) and kinetic (efficiency) performance.