Columns | The LCGC Blog

In a recent review of blood alcohol casework performed by a forensics laboratory associated with a major metropolitan police force, I was again disheartened to find major deficiencies in method validation protocols. In this case, the analysts failed to check whether aqueous solutions for calibration and quality control were reliable surrogates for real blood samples.

I’ve done that thing where I’ve stated a very interesting title-I hope I can deliver something which lives up to it. I dislike it when people “overstate” their talk or poster titles at conferences to draw me in and then don’t deliver against the promise-I’ll let you judge how we go here.

Top-down protein quantitation, especially using triple-quadrupole MS, but even in general, has hardly been pursued. To help fill this gap, we recently reported a systematic investigation of intact-protein quantitation using multiple reaction monitoring (MRM) on a triple-quadrupole MS system, and we believe that this approach can be a promising alternative route to consider going forward.

Not every method is as we would hope it would be. Some methods come to us in imperfect form and we have to live with them, while others are difficult separations and, by necessity, need to be developed using close control of several variables such as eluent pH, eluotropic strength, ionic strength etc.

In 2009 I wrote an article on the emerging field “Bio Chromatography,” which for a small molecule analyst such as myself, perfectly described the situation. I realize that the separation of biomolecules had been happening for many years, but the expansion and development of protein based therapeutics from that point onwards has seen an avalanche of developments in instrumentation, sample preparation, and column technologies the like of which I have not seen in my 30 year career.

The literature on reversed-phase liquid chromatography of proteins is reasonably well developed, but not taught in the college classroom to a significant degree. So I would like to focus on a stoichiometric displacement model for reversed-phase LC of proteins that I found to be particularly insightful from a practical standpoint.

There has been much written about the use of nitrogen as a carrier gas for capillary GC. Formerly, to say it wasn’t any good. Latterly to say that it’s pretty good and a better alternative to Helium than hydrogen from a practicality standpoint.

There is a shortcoming in our current educational system. There is too much rote learning, and not enough time given to let science-minded students explore a topic. Overall, when students ask their own questions (not ones given to them by instructors), they become more invested in finding the answers.