Tony Taylor | Authors

Tony Taylor is Group Technical Director of Crawford Scientific Group and CHROMacademy. His background is in pharmaceutical R&D and polymer chemistry, but he has spent the past 20 years in training and consulting, working with Crawford Scientific Group clients to ensure they attain the very best analytical science possible. He has trained and consulted with thousands of analytical chemists globally and is passionate about professional development in separation science, developing CHROMacademy as a means to provide high-quality online education to analytical chemists. His current research interests include HPLC column selectivity codification, advanced automated sample preparation, and LC–MS and GC–MS for materials characterization, especially in the field of extractables and leachables analysis.

Articles

The LCGC Blog: Killer Gas Chromatography Variables—and Other Insidious Ways to Destroy your Chromatography!

I’d like to concentrate on variables that can really impact our chromatography, but may be on hidden, supplementary, or advanced pages of our software, or may appear on the main software acquisitions menus, but are poorly understood or rarely altered. These variables are often not specifically referenced in laboratory methods documents or, if they do appear, are poorly understood.

The LCGC Blog: A New View of Reversed-Phase HPLC Selectivity

Over the 17 years since the original Hydrophobic Subtraction Model for HPLC selectivity was published, those who curate the model have collected a huge amount of data as new HPLC stationary phases have been added. Analysis of this new data on almost 600 stationary phases has allowed us to update or adjust several of the stationary phase–analyte interaction terms within the model as well as adding one entirely new term to better describe the dipolar interactions with more modern stationary phases such as the pentafluoro phenyl-type phases.

The LCGC Blog: Water immiscible solvents as sample diluents in reversed-phase HPLC – you must be joking!

Many of us have faced the situation where we have analytes that vary widely in their polarity or LogP(D) values and encounter issues with analyte solubility when choosing a suitable sample diluent for our high-pressure liquid chromatography (HPLC) analysis. The more polar analyte will favor aqueous solvents, and the less polar will be more highly soluble in organic solvent—so which do we choose?