
- The Column-10-24-2014
- Volume 10
- Issue 19
Foodomics Approach Detects Anticancer Polyphenols in Rosemary
A study published in the journal Analytical Chemistry presents the application of a foodomics approach – combining transciptomics with metabolomics – to determine the anticancer mechanism of action of polyphenols contained in Rosmarinus officinalis L., commonly known as rosemary.1
Photo Credit: Creativeye99/Getty Images
A study published in the journal Analytical Chemistry presents the application of a foodomics approach — combining transciptomics with metabolomics — to determine the anticancer mechanism of action of polyphenols contained in Rosmarinus officinalis L., commonly known as rosemary.1
The major compounds in rosemary are carnosic acid (CA) and carnosol (CS) that, according to the paper, account for more than 90% of the antioxidant activity of rosemary leaves although only make up 5% of dried rosemary leaves. Corresponding author Virginia García-Cañas told The Column: “Our studies on the chemical composition indicated that the most potent extracts on inhibiting cell proliferation were richer in medium to low polarity phenolic compounds (in this instance, carnosic acid and carnosol).” She added: “In addition, carnosic acid has been the focus of different research works that have concluded that this compound may have not only anti-proliferative activities but also anti‑inflammatory properties and neuroprotective activities, besides its well‑known antioxidant capacity.”
Colon adenocarcinoma HT-29 cells were exposed to varying concentrations of rosemary extract, CA, and CS to determine the effect of treatment on cell cycle progression. Following treatment, comparative transcriptomics was performed to determine differences in gene expression dependent on treatment. Metabolic profiles were determined using capillary electrophoresis time-of-flight mass spectrometry (CE–TOF-MS) and hydrophilic interaction chromatography/ultrahigh‑performance liquid chromatography (HILIC/UHPLC–TOF-MS).
The authors found that CA activated the expression of genes encoding detoxifying enzymes and altered the expression of genes associated with the transport and biosynthesis of terpenoids. García-Cañas told The Column: “This approach provides new and unique opportunities to unravel the molecular mechanisms underlying the bioactivity of the compounds under study. Thus, foodomics helps on achieving high reliability on the results since it enables different dimensions (or levels of molecular information) of the same pathway, biological function, or process to be explored.” — B.D.
Reference
A. Valdés et al., Analytical Chemistry86, 9807–9815 (2014).
Articles in this issue
about 11 years ago
Handmade Sea Salt Markersabout 11 years ago
Critical Evaluation of GC Methodsabout 11 years ago
Fleeting Fashion versus Tried and Tested Techniquesabout 11 years ago
Sample Amount Normalization in Metabolomicsabout 11 years ago
New Developments in the Analysis of Complex Environmental Matricesabout 11 years ago
Analyzing Failure Using Pyrolysis-GC–MSabout 11 years ago
Vol 10 No 19 The Column October 24, 2014 North American PDFabout 11 years ago
Vol 10 No 19 The Column October 24, 2014 Europe and Asia PDFNewsletter
Join the global community of analytical scientists who trust LCGC for insights on the latest techniques, trends, and expert solutions in chromatography.





