Ultrapure water is highly prone to contamination, e.g. it easily leaches contaminants out of container surfaces and absorbs contamination from the laboratory environment. As ultrapure water is the most frequently used solvent in any LC-MS laboratory, its purity plays a critical role in analyses. There are a number of high purity water handling pitfalls that result in degradation of its quality. To help analysts critically evaluate the potential risks involved in poor ultrapure water handling, we discuss here (I) the effect of laboratory environment and long high purity water storage, (II) the effect of the container material used to collect ultrapure water, (III) the effect of laboratory ware and equipment cleaning, and (IV) the effect of poor practices of water purification system usage.
Revolutionizing LC-MS with Next-Gen Separation for Cyclic Peptide Analysis
February 17th 2025Cyclic peptides, known for their stability and high specificity, are promising therapeutic agents in the fight against cancer, infections, and autoimmune diseases. However, developing effective cyclic peptides presents numerous challenges, including poor pharmacokinetics, efficacy, and toxicity. Traditional methods like liquid chromatography tandem-mass spectrometry (LC-MS/MS) often struggle with resolving isomeric linear peptide metabolites, posing significant risks in safety, efficacy, and regulatory approval. In this paper, Komal Kedia, PhD, will share how she leveraged MOBIE’s high-resolution ion mobility-mass spectrometry (IM-MS) system to achieve a 72% reduction in run times, 200% greater resolving power, and enhanced accuracy in identifying “soft spots” prone to enzymatic degradation.