A chronological examination of GC is presented here, with a look at where the technique is heading and how it can be used to advance environmental sustainability.
In the present research, similar chromatography fingerprints were obtained using finely-tuned cryogenic-modulation (CM) and flow-modulation (FM) comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS) experimental conditions.
In the present research, similar chromatography fingerprints were obtained using finely-tuned cryogenic-modulation (CM) and flow-modulation (FM) comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS) experimental conditions.
The concept of (heart-cutting) multidimensional gas chromatography (MDGC) was introduced shortly after the invention of gas chromatography (GC). In that first experiment, the term “two-stage” was used to define the multidimensional process in applications involving the heart‑cutting of four hydrocarbon fractions, ranging from C5 to C8. The latter were separated first on a nonpolar packed column, and then on a polar one. A rather complex combination of valves enabled two-dimensional (2D) analysis. The great potential of the approach became immediately evident.
This article is focused on the detailed qualitative analysis of the fatty acids and the unsaponifiable constituents of a vegetable oil derived from a food-industry waste product, namely lemon seeds.
An overview of important GC–MS techniques currently used in food analysis is described. Considerable attention is devoted to the use of the mass spectrometer, in relation to its poptential for separation and identification. The importance of comprehensive GC?GC is also discussed.