October 9th 2024
Scientists from Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE-CNRS) in Orléans, France and Chromatotec in Saint-Antoine, France recently created a new algorithm for detecting volatile organic compounds (VOCs) in ambient air.
Diagnosing Cancer Using Cerumen and HSGC–MS
November 6th 2019The Column spoke to Nelson Roberto Antoniosi Filho, a professor at the Chemistry Institute of the Federal University of Goiás (UFG), in Goiânia, Brazil, about his development of a gas chromatography–mass spectrometry (GC–MS) method for cancer diagnosis using cerumen.
The chemical analysis of organic compounds in environmental samples is often targeted on predetermined analytes. A major shortcoming of this approach is that it invariably excludes a vast number of compounds of unknown relevance. Nontargeted chemical fingerprinting analysis addresses this problem by including all compounds that generate a relevant signal from a specific analytical platform and so more information about the samples can be obtained. A DHS−TD−GC−MS method for the fingerprinting analysis of mobile VOCs in soil is described and tested in this article. The analysis parameters, sorbent tube, purge volume, trapping temperature, drying of sorbent tube, and oven temperature were optimized through qualitative and semiquantitative analysis. The DHS−TD–GC−MS fingerprints of soil samples from three sites with spruce, oak, or beech were investigated by pixel-based analysis, a nontargeted data analysis method.
A Novel Snapshot of Wine Analysis Using Automated Gas Chromatography–Mass Spectrometry
February 12th 2018The Column spoke to Ricardo Lopez from the University of Zaragoza, in Spain, about his work characterizing the composition of the vapours from wine during consumption using an automated gas chromatography–mass spectrometry (GC–MS) technique.
Sampling Volatiles From Fragranced Consumer Products Using High-Capacity Sorptive Extraction
January 16th 2018This study describes the analysis of fragranced washing detergent and washing powder using probe-based headspace and immersive sorptive extraction, in conjunction with analysis by thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS). As well as discussing the differences between the two samples, the analyte ranges covered by headspace and immersive sampling are compared.
Analyzing Chemical Secretions in Lizards Using GC–MS/MS
November 1st 2017The chemical messages that animals use to communicate can trigger a range of responses in members of the same species. The Column spoke to Jorge Saiz from the Centre of Metabolomics and Bioanalysis (CEMBIO) at the University San Pablo CEU, Spain, about his research into the chemical secretions of lizards and the role of gas chromatography–tandem mass spectrometry (GC–MS/MS) in his work.
Novel Sample Preparation and GC–MS/MS Analysis of Triclosan and Methyl Triclosan in Biosolids
October 1st 2017The antimicrobial triclosan is present in myriad personal care products, many of which are disposed of down household drains and travel to wastewater treatment plants. This article describes a simple and rapid method for the preparation and extraction of triclosan and methyl triclosan from the complex matrix of biosolids and paper mulch samples followed by analysis using GC–MS/MS.
Analysis of Terpenes in Cannabis Using Headspace Solid-Phase Microextraction and GC–MS
May 1st 2017As the legalization of medicinal cannabis continues to sweep across the United States, an urgent need has developed for fast, accurate and efficient analytical testing. In addition to testing for contaminants and potency, there is also interest in the determination of terpene identity and concentration levels present in different strains of cannabis. Terpenes have been shown to have therapeutic uses for treatment of different medical conditions ranging from cancer and inflammation, to anxiety and sleeplessness. It is believed that the combination of terpenes and cannabinoids in cannabis produce a synergistic effect with regards to medical benefits. The traditional testing method for terpenes in plant materials involves a solvent-based extraction followed by GC analysis. In this work, headspace solid phase microextraction (HS-SPME) was used to identify and quantify terpene content in cannabis. The HS-SPME method provided several advantages over solvent extraction in that it provided a cleaner analysis, free of interferences from co-extracted matrix, and was non-destructive to the sample. A cannabis sample of unknown origin was first analyzed qualitatively by HS-SPME and GC-MS. Spectral library matching and retention indices were used to identify 42 different terpenes. Quantitative analysis was then performed for several selected terpenes using spiked samples. Method accuracy was >90%, with reproducibility of
The development of various analytical MS methods to investigate the chemical composition of liquids used in electronic cigarettes and characterize their quality is presented in this study.
Combining Thermal Desorption GC and TOF-MS for the Determination of Melon VOC Profiles
October 1st 2015A method based on thermal desorption with gas chromatography–time-of-flight mass spectrometry (GC–TOF-MS) can elucidate how key volatiles vary with the size of the melon pieces. Such analytical information is of value in efforts to improve the quality and safety of ready-to-eat foods.