The Application Notebook
Phenol formaldehyde resins are formed by a step-growth polymerization. GPC/SEC with RI and UV detection is often used to characterize resins and to quantify the amount of different oligomeric species.
Phenol formaldehyde resins are formed by a step-growth polymerization. GPC/SEC with RI and UV detection is often used to characterize resins and to quantify the amount of different oligomeric species. Additional information is available if a ESI-MS-spectrometer is on-line attached to the GPC/SEC system. This technique combines the separation ability of GPC/SEC with the sensitivity and specificity of detection from MS and allows the identification of oligomeric species and gives information about the degree of CH2-OH substitution.
GPC/SEC analysis was performed on a PSS SECcurity 1200 system consisting of:
Columns: PSS SDV, 5 µm, 50 + 100 + 1000 Å, 8 × 300 mm each + precolumn
Solvent: THF
Flow rate: 0.3 mL/min
Inject volume: 20 µL
Software: PSS WinGPC Unity 7.4, Thermo Fisher Excalibur 2.07
Figure 1: RI trace oligomeric phenol formaldehyed resin, degree of polymerization identified from corresponding mass spectrum.
Figure 1 shows the elugram of an oligomeric phenol formaldehyde resin, separated into three different peaks with 1, 2 and 3 repetition units. The mass spectra are then measured for each species. Figure 2 shows as example the mass spectrum for peak n = 1 while Table 1 summarizes the masses possible in theory and identified (green) or not detected (grey). This combined approach can be used for molar masses up to approx. 2000 Da, higher degrees of polymerization have also been investigated.
Figure 2: Mass spectrum for n = 1 showing the 3 different species (CH2âOH substitution).
Table 1
PSS Polymer Standards Service GmbH
In der Dalheimer Wiese 5, D-55120 Mainz, Germany
tel. +49 6131 96239 50 fax +49 6131 96239 11
E-mail: fgores@polymer.de
Website: www.analyzepolymers.com
Simplifying the GC Laboratory for Improved Efficiency
December 9th 2024Laboratories continually work to increase the capacity of their equipment, improve turnaround times and gain confident and detailed insights without generating additional burden on their operators. Discover how adopting the simplification strategy of Industry 4.0 with the GC 2400™ Platform can enhance GC workflows to increase efficiency, data quality, and business sustainability
How to Enable Sustainable GC Lab Operations
December 9th 2024Sustainability strategies are being integrated into a growing number of businesses and their operations. Laboratories are no exception. Although the necessity to reduce the environmental impact of laboratory operations is recognized, it cannot be disengaged from the economic viability of labs. This article shares ways in which laboratories can improve both their business and environmental sustainability and discusses how the GC 2400™ Platform is helping laboratories flourish in these areas
What Are the Key Features of a Smart and Connected GC Lab?
December 9th 2024The potential of smart technologies has evolved into a operational necessity - businesses were faced with the need for remote and automated operations bringing substantial improvements in productivity, efficiency, and operating costs.
Automated PFAS Extraction from Difficult Food and Food Packaging Samples
December 6th 2024More and more regulations regarding PFAS are being implemented with action limits that continue to decrease. Having a harmonized method to accurately determine the PFAS content in food, as well as other matrices, is important to ensuring long-term detection and regulation. The solvent extraction of PFAS from these varied sample matrices can be challenging given the susceptibility to contamination and the low levels in which these compounds are present. This poster, presented at RAFA 2024, examines the PFAS extraction several different food samples as well as food packing matrices.
Extraction of 40 PFAS Compounds from Soil and Tissue
December 6th 2024PFAS have been shown to cause health issues in humans, which means monitoring environmental solid samples, such as soil and tissue, is critical. This application note details the extraction of 40 spiked PFAS compounds from soil and tissue following EPA Method 1633. The automated extraction was less than 10 minutes per sample and yielded acceptable recoveries and RSDs without carryover in the system. The EDGE PFAS is an ideal option for laboratories that want to automate their PFAS extractions of solid samples.