A new approach for the analysis of water in solid pharmaceutical products using headspace gas chromatography (HSGC) with an ionic liquid (IL)-based open tubular capillary GC column has been proposed by scientists at the University of Texas at Arlington (Texas, USA). Published in the Journal of Pharmaceutical and Biomedical Analysis, the study states that the sensitivity of the method is 100 times that of the commonly used volumetric Karl Fischer Titration (KFT) (1).
A new approach for the analysis of water in solid pharmaceutical products using headspace gas chromatography (HSGC) with an ionic liquid (IL)-based open tubular capillary GC column has been proposed by scientists at the University of Texas at Arlington (Texas, USA). Published in the Journal of Pharmaceutical and Biomedical Analysis, the study states that the sensitivity of the method is 100 times that of the commonly used volumetric Karl Fischer Titration (KFT) (1).
Determining the levels of water within commercial drugs is essential as it can be associated with decreased shelf life, drug instability, and the encouragement of microbial growth. It can also vary throughout the product supply chain, and so continual monitoring is essential. Lead author Daniel W. Armstrong of the University of Texas (USA) told LCGC: “Analyses for water are among the most ubiquitous measurements done in the world. They are often mandated by regulatory agencies for many consumer products including drugs.”
Commonly used methods for assaying water in pharmaceuticals are KFT and “loss on drying”. “Loss on drying” is not particularly accurate as it depends on the evaporation of water from a sample, and many drugs are vulnerable to heat treatment. KFT is also plagued by a number of issues as well, such as high solvent consumption and long analysis time. Furthermore, when handling solid samples, sample preparation steps can further complicate analysis.
The team had already developed a capillary GC method to measure water in a range of solvents, using newly developed IL stationary phases, according to Armstrong, and the big question for them was: “Could we also develop an ionic liquid-based GC method to measure water in solids?”
Armstrong said: “Obviously you can’t directly inject a solid directly into a GC. If you dissolve it (the solid sample) in some solvent, you will get a huge solvent peak in your chromatogram and the nonvolatile solid material will collect and decompose in your injector. We decided to see if we could use a headspace approach in which we also used another IL as the solvent in the headspace vial (because the IL, which is not volatile, would not be present in the headspace and therefore not be in the chromatogram either).”
The team performed KFT, limit of detection (LOD), and HSGC for the analysis of water content in 23 standard compounds including ibruprofen and warfarin. LOD was found to be ineffective for nearly half of the compounds tested as the samples degraded during the experiment or were subject to side reactions. The sensitivity of the HSGC method was shown to be higher than volumetric KFT by up to 100 times, allowing small sample sizes to be analyzed.
Reference
1. D.W. Armstrong et al., Journal of Pharmaceutical and Biomedical Analysis94, 111–117 (2014).
This article is from The Column. The full issue can be found here.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Metabolomics Analysis of Low Birth-Weight Infants Using UHPLC-MS/MS Following Lipid Emulsion
January 10th 2025A recent study aimed to directly compare the changes in serum metabolites among very low birth-rate (VLBW) infants following the administration of the soybean oil-based lipid emulsion and soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) lipid emulsion using untargeted metabolomics techniques.
Analyzing New Drug Modalities: An ISC 2024 Interview with Kelly Zhang
January 10th 2025At ISC 2024 in Liverpool, United Kingdom, LCGC International interviewed Kelly Zhang of Genentech about her work analyzing new drug modalities, such as mRNA, oligonucleotides, peptides, and cell and gene therapies.