The Application Notebook
In this application, we demonstrate the use of supported liquid extraction (SLE) for the extraction of beta blockers and NSAIDS from plasma compared with traditional liquid–liquid extraction. SLE was demonstrated to yield consistent LOQs using lower sample volumes.
In this application, we demonstrate the use of supported liquid extraction (SLE) for the extraction of beta blockers and NSAIDS from plasma compared with traditional liquid–liquid extraction. SLE was demonstrated to yield consistent LOQs using lower sample volumes.
Traditional liquid–liquid extraction (LLE) provides very clean extracts. In many cases lower recoveries, laborious liquid handling issues and difficulty during automation can limit the success of LLE in sample preparation. Supported liquid extraction (SLE) is a 96-well high throughput technique that is analogous to traditional LLE. In SLE, the extraction interface occurs between the buffered sample, absorbed onto an inert solid support and a water immiscible solvent. The high surface area of the material provides excellent extraction efficiency, while alleviating many of the liquid handling issues associated with traditional LLE. This application note compares ISOLUTE SLE+ with traditional LLE in terms of recoveries and demonstrates equivalent limits of quantification with smaller sample volumes using the supported liquid extraction (SLE+) approach.
Supported liquid extraction procedure
Plate: ISOLUTE SLE+ 400 supported liquid extraction plate, part number 820-0400-P01.
Figure 1: SLE1/LLE β-blocker recovery comparison (200 pg/mL).
Sample pre-treatment:
Acidic analytes (NSAIDs): Plasma (200 μL) pre-treated 1:1 v/v with 1% formic acid aq.
Basic analytes (β-blockers): Plasma (200 μL) pre-treated 1:1 v/v with 0.5 M ammonium hydroxide.
Sample application: The pre-treated plasma (total 400 μL) was loaded onto the plate, a pulse of vacuum applied to initiate flow and the samples left to absorb for 5 minutes.
Analyte elution: Addition of 2 × 900 μL of either MTBE (NSAIDs) or EtOAc (β-blockers).
Figure 2: SLE1/LLE NSAID recovery comparison (10ng/mL)
Liquid–liquid extraction procedure
Plasma (500 μL) was pre-treated 1:1 v/v with: 1% formic acid aq. and extracted with 1.8 mL of MTBE (NSAIDs); or 0.5 M ammonium hydroxide and extracted with EtOAc (β-blockers). The layers were left to separate and the organic aliquot removed.
Post extraction: The extract was evaporated to dryness and the analytes reconstituted in 500 μL of appropriate H2O/MeOH mixtures prior to analysis.
Figure 3: SLE1/LLE β-blocker spiked signal comparison (100 pg/mL).
HPLC conditions
Instrument: Waters 2795 Liquid Handling System (Waters Assoc., Milford, Massachusetts, USA)
Column: Zorbax Eclipse XDB C18 3.5 μm analytical column (100 × 2.1 mm i.d., 3.5 μm) (Agilent Technologies, Berkshire, UK).
Guard column: C8 guard column (Agilent Technologies, Berkshire, UK).
Mobile phase: 0.1% formic acid aq. and MeCN (acetonitrile) at a flow-rate of 0.25 mL/minute using various gradients.
Injection volume: 15–25 μL
Temperature: Ambient
Figure 4: SLE1/LLE NSAID spiked signal comparison (10 ng/mL).
Mass spectrometry
Instrument: Ultima Pt triple quadrupole mass spectrometer (Waters Assoc., Manchester, UK) equipped with an electrospray interface for mass analysis. Positive and negative ions were acquired in the multiple reaction monitoring mode (MRM). All β-blockers were analysed in positive ion mode, whereas, the NSAIDs required both positive and negative MRM transitions.
Desolvation temperature: 350 °C
Ion source temperature: 100 °C
Collision gas pressure: 2.4 × 10–3 mbar
Table 1: LLE/SLE1 β-blocker LOQ comparison.
Figures 1 and 2 show SLE+ and LLE recovery data for the β-blockers and NSAID's, respectively. This data is based on the recovery compared to blank plasma sample fortified post extraction at the same concentration. Figures 3 and 4 show spiked sample response against a standard at the same concentration for the β-blockers and NSAIDs, respectively. This data takes into account the recovery and suppression observed using the two techniques. Tables 1 and 2 show limits of quantification observed for the β-blockers and NSAIDs, respectively. Some analyte LOQ's were lower than the lowest level extracted and as a result the level was estimated based on the lowest signal-to-noise ratio.
Table 2: LLE/SLE1 NSAID LOQ comparison.
Biotage GB Ltd
Kungsgatan 76, SE-753 18 Uppsala, Sweden
tel. +46 18 56 57 10 fax +46 18 56 57 05
Website: www.biotage.com
Measuring Procyanidin Concentration in Wines Using UHPLC
January 24th 2025Researchers from the University of Bordeaux (Villenave d'Ornon, France) report the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high performance liquid chromatography (UHPLC) coupled with a ultra-high performance liquid chromatography (Q-TOF) mass spectrometer.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.