Phenomenex Application Note
When working with complex matrices such as personal care products, sample preparation is perhaps the most difficult step of the analysis process. By utilizing a targeted sample preparation technique, such as ion-exchange SPE, analysis can be significantly improved as compared to less targeted techniques such as liquidliquid extraction. Our work successfully extracted metronidazole from foaming facial cleanser using a polymeric cation-exchange SPE sorbent, Strata™ -X-C, followed by a rapid LC–MS-MS analysis on a Kinetex® 2.6 µm XB-C18 HPLC/UHPLC core-shell column.
Materials and Methods
Sample Pretreatment:
1. Dissolve 0.250 g of foaming facial cleanser in 10 mL of 0.1 N HCl
2. Vortex until homogeneous
3. Centrifuge sample at 5000 g for 5 min
Solid-Phase Extraction (SPE)
The pretreated sample is further cleaned up and concentrated using SPE.
Cartridge: Strata-X-C, 30 mg/3 mL
Part No.: 8B-S029-TBJ
Condition: 1 mL methanol
Equilibrate: 1 mL 0.1 N HCl
Load: 3 mL of pretreated sample
Wash 1: 3 mL 0.1 N HCl
Wash 2: 3 mL methanol
Wash 3: 6 mL ethyl acetate
Dry: 5 min under full vacuum
Elute: 1 mL 5% NH4OH in methanol (v/v)
Dry down: Evaporate under a stream of nitrogen gas at 50 °C until dry
Reconstitute: Reconstitute samples with 200 µL of methanol/0.1% formic acid (10:90)
Results and Discussion
We were able to effectively extract metronidazole from foaming facial cleanser using a targeted SPE procedure on Strata-X-C polymeric SPE sorbent. The cation-exchange properties of the Strata-X-C SPE sorbent targeted the sp2 hybridized nitrogen at the 3 position of the imidazole ring in the metronidazole structure, forming a tight bond between the sorbent and the metronidazole compound. The strong interaction allowed a strong solvent wash of ethyl acetate to be performed which removed a significant amount of matrix interferences (Figure 1).
Figure 1: The vial on the left was not subjected to a strong organic wash and, therefore, contains matrix interferences such as foaming agents. After a strong ethyl acetate wash, matrix interferences are no longer present in the vial on the right.
Conclusion
By implementing a targeted SPE method, matrix interferences were significantly removed from a foaming facial cleanser matrix. This clean-up process allowed for a sensitive LC–MS-MS method that could detect metronidazole at low levels, down to 100 pg/mL. (Visit www.phenomenex.com/Application and search for Application No. 20631 for LC–MS-MS conditions).
Phenomenex Inc.
411 Madrid Avenue, Torrance, California 90501, USA
tel. +1 (310) 212-0555, +1 (310) 328-7768
Website: www.phenomenex.com
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Investigating Synthetic Cathinone Positional Isomers using LC–EAD-MS
November 7th 2024Peng Che fom Vrije Universiteit Amsterdam in the Netherlands discusses the benefits of hyphenating liquid chromatography (LC) with electron activated dissociation mass spectrometry (EAD-MS) to analyze cathinone positional isomers.