Validation is not an easy task. It is an ongoing complex process that evaluates the entire, sample specific process, products and analytical methods.
Validation is not an easy task. It is an ongoing complex process that evaluates the entire, sample specific process, products and analytical methods and consists of four qualification phases: Design Qualification (DQ), Installation Qualification (IQ), Operational Qualification/Performance Verification (OQ/PV) and Performance Qualification (PQ).
Before the first sample is analysed, users have to verify and document that the system meets the user requirement specifications, is correctly installed and working according to the manufacturer’s specifications in the selected environment.
Validation of the system is complete after the instrument hardware, software, data, analytical method and operators are factored in the process. In addition to simple performance tests for each isolated component, it is essential to confirm that the complete system works according to the performance specifications of the analysis method (holistic approach). Here it is important to take the specific requirements of the applied method into account. This ensures that all critical parameters influencing the results are identified and properly monitored over the system’s life cycle.
Identifying Antioxidative Properties in Berries with UHPLC-MS
Published: November 27th 2024 | Updated: November 27th 2024A recent study identified and quantified anthocyanin (which are known for their antioxidative properties and potential effectiveness against depression) in blueberries, blackberries, black mulberries, and cranberries using ultra high-pressure liquid chromatography (UHPLC) followed by in vivo evaluation of their antidepressant-like activities.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Innovative cryogen-free ambient air monitoring of trace-level air toxics at high humidity
November 27th 2024This application note presents an advanced analytical system for the sensitive detection of trace-level air toxics in humid ambient air samples, in accordance with US EPA Method TO-15A. The cryogen-free preconcentration and thermal desorption approach, coupled to GC-MS, delivers exceptional chromatographic performance even for highly volatile and polar compounds. The system meets the stringent detection limit requirements of the latest air monitoring regulations, with method detection limits as low as 0.7 pptv. This innovative analytical solution provides a robust, cost-effective platform for the reliable quantification of hazardous air pollutants, enabling compliance with regulatory standards.
Continuous, cryogen-free on-line monitoring of PAMS in ambient air using hydrogen carrier gas
November 27th 2024This application note explores an efficient, helium-free method for continuous monitoring of ozone precursors in ambient air, aligned with EPA PAMS requirements. By using hydrogen as the carrier gas, this approach achieves faster run times, stable retention times, and effective separation of volatile organic compounds. A case study from New York City highlights the system's performance in urban air quality monitoring, capturing shifts in pollutant levels during periods of reduced traffic. With remote operability and cryogen-free functionality, this method offers a reliable and sustainable solution for real-time air quality analysis in both urban and remote environments.