Wyatt Application Note
The objective of this experiment was to develop a greener synthesis of disulphide polymers, which are reducible under specific biological conditions.
The monomer, 3,6-dioxa-1,8-octanedithiol, and triethylamine (1:1.25 equivalent ratio) were reacted under bulk conditions for 10 min. To the bulk mixture, 2.0 equivalents of hydrogen peroxide (3% aqueous solution by weight) were added. The polymer was allowed to react with oxidative solution for a given amount of time. It was then removed from the solution, purified in acetone and dried.
Molecular weights of soluble products were determined by size exclusion chromatography (SEC) on a system equipped with six Waters Styragel columns, a Waters 2487 dual absorbance UV detector, an Optilab DSP interferomatic refractometer (Wyatt Technology), a DAWN EOS multi-angle laser light-scattering detector (Wyatt Technology) and a ViscoStar viscometer (Wyatt Technology). The data from the SEC was processed using Wyatt's ASTRA software.
Figure 1: Light scattering and rms radius plots for sample EQR-3-7B.
The dn/dc value for the polymer was calculated by two methods: 100% mass recovery (0.116 mL/g) and by RI analysis of a series of polymer dilutions (0.132 mL/g). It was found that the molecular weight of the polymer depends heavily on the reaction time of the oxidative step and on the reaction temperature. Data from two example polymerizations demonstrates the time dependence. Only 9 min after the addition of hydrogen peroxide, the reaction reached 73% conversion, and Mn = 14000 g/mol (sample EQR-3-7B). Additional reaction time in the oxidative solution increased the conversion to 90% and Mn to 230000 g/mol (EQR-2-13-062910D).
Figure 2: All detector traces for sample EQR-2-13-062910D.
DAWN, miniDAWN, ASTRA, Optilab and the Wyatt Technology logo are registered trademarks of Wyatt Technology Corporation.
Wyatt Technology Corporation
6300 Hollister Avenue, Santa Barbara, California 93117, USA
tel: +1 805 681 9009 fax: +1 805 681 0123
E-mail: info@wyatt.com Website: www.wyatt.com
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Investigating Plastic Contamination in Olive Oil with GC–MS/MS
January 17th 2025The objective of this study was to investigate contamination by 32 plasticizers in olive oil throughout its production and packaging process. Separation and detection were carried out by gas chromatography tandem mass spectrometry (GC–MS/MS), without the need for pre-concentration steps.
Top Execs from Agilent, Waters, and Bruker Take the Stage at J.P. Morgan Healthcare Conference
January 16th 2025The 43rd Annual Healthcare J.P. Morgan Healthcare Conference kicked off in San Francisco earlier this week. Here’s what top executives from Agilent, Bruker, and Waters, discussed during the event.