Q: We currently use a glass filtration setup attached to a pump using 0.45-?m membrane filters. The flask contains a magnetic stirrer. As the solution passes the membrane filter, gas bubbles appear on its surface. As soon as the solution has completely passed through the filter the vacuum pump is turned off and the solution is poured from this setup into another bottle and stoppered until use (up to 3?4 days time). The HPLC equipment has inline degassers that are routinely used. Besides filtering is this setup degassing? To effectively degas a solution should the solution remain under vacuum for a longer period than the time it takes to filter? Should we be using this setup to filter?degas HPLC-grade solvents or commercial mobile phases?
The following question and answer were posted on the Chromatography Forum website. The answer was provided by Tom Jupille of LC Resources/Separation Science Associates.
We currently use a glass filtration setup attached to a pump using 0.45-µm membrane filters. The flask contains a magnetic stirrer. As the solution passes the membrane filter, gas bubbles appear on its surface. As soon as the solution has completely passed through the filter the vacuum pump is turned off and the solution is poured from this setup into another bottle and stoppered until use (up to 3â4 days time). The HPLC equipment has inline degassers that are routinely used. Besides filtering is this setup degassing? To effectively degas a solution should the solution remain under vacuum for a longer period than the time it takes to filter?Should we be using this setup to filterâdegas HPLC-grade solvents or commercial mobile phases?
Is the setup degassing as well as filtering? Yes, to some extent. As for the efficacy of degassing a solution by filtration, it depends on what you mean by "effectively." The problem is that the solubility of air in binary mixtures of polar organics and water is lower than the average of the solubilities in either of the pure solvents. When you mix the solvents, the excess air comes out as bubbles.
In the case of premixed mobile phase, vacuum filtration is probably sufficient. All you have to do is to give the excess air (bubbles) a place to go. In the case of "on-line mixing," the job is a lot harder, because you have to get the dissolved air levels in each component down far enough that you will be below the saturation curve when you mix them. In any case, as soon as you expose the solvents to the atmosphere, they start to re-saturate.
Regarding the part of the question about filtering HPLC-grade solvents, they are typically filtered through 0.2-µm filters at the bottling point.
Questions?
LCGC technical editor Steve Brown will answer your technical questions. Each month, one question will be selected to appear in this space, so we welcome your submissions. Please send all questions to the attention of "Ask the Editor" at lcgcedit@lcgcmag.com We look forward to hearing from you.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Investigating Plastic Contamination in Olive Oil with GC–MS/MS
January 17th 2025The objective of this study was to investigate contamination by 32 plasticizers in olive oil throughout its production and packaging process. Separation and detection were carried out by gas chromatography tandem mass spectrometry (GC–MS/MS), without the need for pre-concentration steps.
Top Execs from Agilent, Waters, and Bruker Take the Stage at J.P. Morgan Healthcare Conference
January 16th 2025The 43rd Annual Healthcare J.P. Morgan Healthcare Conference kicked off in San Francisco earlier this week. Here’s what top executives from Agilent, Bruker, and Waters, discussed during the event.