The Application Notebook
Wyatt Technology Corporation
Hyaluronic acid (HA) is an ubiquitous, very high molar mass polysaccharide that has been of particular importance in opthalmic surgery. HA acts as a molecular "shock-absorber" and stabilizer for cells and its visco-elastic properties are valuable for separating tissue and maintaining shape. It is a critical component in tissue lubrication and is believed to play a leading role in wound repair. Finally, HA's property of non-pyrogenicity makes it an ideal sheath for implants, whose presence might cause the body to suffer an immune response.
Among the many benefits high molecular weight HA hold are:
HA's therapeutic effectiveness depends critically on molecular weight: the higher the molecular weight, the longer its benefit. However, because of its visco-elastic properties, standards-based GPC analysis is inappropriate for characterizing HA. There exist no standards identical to HA and the desirability of altering experimental conditions renders conventional GPC/SEC impractical.
Combining a DAWN with HPLC separation, however, provides an ideal platform for absolute characterization, since the light-scattering measurements do not depend on pump speed, polymer standards, or molecular conformation.
Figure 1: From the molar mass versus time plot, subtle differences can be seen among the samples.
A DAWN was connected to a GPC/SEC line (100 mM NaN03 buffer, TSK-Gel G6000PW column, Optilab DSP refractometer, Waters 510 pump) and the data required to determine not only absolute molar mass, but also molecular size, was generated for a variety of HA products.
Figure 2: The differential molar mass distributions calculated by ASTRA immediately confirm the large differences among the three HA samples.
Figure 1 shows the molar mass versus time (with the 90° light-scattering chromatograms in the background) for the three samples, ranging from approximately 2 million to less than 200K Daltons. Figure 2 illustrates how profoundly different the samples are by revealing their differential molar mass distributions. These indicate that the samples will behave in different ways when used medically, depending on the content of their high molecular weight HA.
Wyatt Technology Corporation
6300 Hollister Avenue, Santa Barbara, California 93117, USA
Tel: +1 (805) 681 9009 fax +1 (805) 681 0123
E-mail: info@wyatt.com Website: www.wyatt.com
Identifying Volatile Organic Compounds (VOCs) Originating from Breath with TD-GC–MS
September 12th 2024Researchers built a reliable breath collection and analysis method using thermo-desorption gas chromatography-mass spectrometry (TD-GC–MS) that can produce a comprehensive list of known volatile organic compounds (VOCs) in the breath of a heterogeneous human population.
Two-Dimensional Supercritical Fluid Chromatography System Created with Multiple Heart-Cutting Modes
September 11th 2024Université d’Orleans and Chromisa Scientific scientists recently created a two-dimensional supercritical fluid chromatography (SFC) system with multiple heart-cutting (MHC) modes.
Modern HPLC Strategies: Improving Retention and Peak Shape for Basic Analytes
August 16th 2024In high-performance liquid chromatography (HPLC), it is common for bases and unreacted ionized silanols on silica-based columns to cause irreproducible retention, broad peaks, and peak tailing when working with basic analytes. David S. Bell, Lead Consultant at ASKkPrime LLC offers innovative HPLC strategies that can help mitigate such issues.
Reliable Separation and Efficient Group-type Quantitation of Total Petroleum Hydrocarbons (TPHs)
September 11th 2024Petroleum contamination from leaking underground storage tanks, for example, is a significant concern for both the environment and human health. Thorough characterization of the contamination is required to form appropriate risk assessments and remediation strategies, but until now, the determination of total petroleum hydrocarbons (TPHs) in soil has typically involved a convoluted and labour-intensive process. In this article, the analysis of TPH in environmental media is simplified using flow-modulated GC×GC–FID with quantitation based on pre-defined compound groupings. This approach overcomes the drawbacks of conventional solvent fractionation approaches, by eliminating the need for sample fractionation and automating data processing workflows.