New techniques in ultrahigh-pressure liquid chromatography (UPHLC) are providing scientists with additional ways to perform laboratory tasks.
New techniques in ultrahigh-pressure liquid chromatography (UPHLC) are providing scientists with additional ways to perform laboratory tasks. To learn more about the latest developments in UPHLC and the future of the technique, LCGC spoke with several experts in the field. Participants in this forum are Wulff Niedner, manager, LC products, Thermo Fisher; Mark Upton, liquid chromatography specialist, PerkinElmer, Seer Green, UK; and Doug McCabe, Senior Marketing Manager, Waters Corporation.
With the advances in column technology that have been occurring over the last two to five years, superficially porous particles (SPP) in particular, are the pressures of UHPLC required?
Niedner: While for sub-2-µm materials the very high pressures of UHPLC are required, ultrafast separations can be achieved with a similar or superior performance on SPP columns with 2.6-µm particle size at pressures between 400 and 600 bar. However for ultrahigh-resolution separations of complex mixtures or in method development using generic gradients, every plate counts. As the number of theoretical plates is proportional to the column length, an effective approach is the use of long columns with core–shell material, which again requires the typical UHPLC pressures.
Upton: The pressures of UHPLC systems are not necessarily required for SPP columns but there are some applications that require longer columns or higher flow rates where the pressures could exceed the 6000-psi limit of an analytical high performance liquid chromatography (HPLC) system. The real advantage of using a UHPLC system is the low system dead volume that allows you to fully realize the efficiency of the column. In our studies we have seen the efficiency nearly double just by optimizing an analytical HPLC system for low dead volume by replacing the capillary tubing, injection loop, and detector flow cell.
SPP columns can be run at flow rates above 6000 psi, affording exceptional throughput. For equivalent column efficiencies, SPPs generate less than half the back pressures of sub-2-µm porous packings.
SPP columns are limited in particle sizes, choices, and selectivity at this time, but columns packed with SPPs can incorporate coarser inlet and outlet filters and are therefore less prone to blocking and increased back pressure over time. The requirement to have the more extreme instrument pressure capability is much reduced, allowing UHPLC performance to be obtained on intermediate or existing conventional pressure pumping and injection systems.
McCabe: The logical next step in all particle development, whether fully porous or pellicular, is to go even smaller. This will require systems that can perform at higher pressures. When particle size is reduced to
Measuring Procyanidin Concentration in Wines Using UHPLC
January 24th 2025Researchers from the University of Bordeaux (Villenave d'Ornon, France) report the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high performance liquid chromatography (UHPLC) coupled with a ultra-high performance liquid chromatography (Q-TOF) mass spectrometer.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.