Dionex Application Note
Biodiesel fuels are part of a rapidly growing alternative fuel industry to replace gasoline with renewable, more efficient and lower emission fuels.1 Biodiesel contains diesel fuel blended with 2–20% (B2–B20) of fatty acid methyl esters (FAME), which are manufactured by transesterification of vegetable or animal oils to generate three molecules of free FAMEs and one molecule of glycerol byproduct. Free and bound glycerol from unconverted triglycerides can cause diesel engine failures. Therefore, ASTM D6751 specifies limits for free glycerol and bound glycerol at 0.02 and 0.24 wt % respectively in biodiesel determined using GC–FID.1 However, this method requires sample derivatization, which increases sample handling time and expense. This application brief describes a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) method for free and total glycerol in biodiesel that meets the ASTM limit requirements and eliminates the sample derivatization step.
A Dionex ICS-3000 chromatography system with an electrochemical detector was used. For free glycerol determinations, the biodiesel samples were extracted with water and the aqueous layer was removed for analysis. For total glycerol determinations, biodiesel samples were hydrolysed in 1 M NaOH by refluxing at 95 °C for 1 h, cooled and the aqueous layer removed for analysis.1
The method was evaluated by determining the LOD, LOQ and the linearity of response from seven standards (n = 2, 0.05–10 mg/kg glycerol). The method was sensitive, with an LOD (3× S/N) and LOQ (10× S/N) of 0.5 and 2.4 µg/kg, respectively. The linearity in the specified range produced a coefficient of determination (r2 ) of 0.9998.
To evaluate the method for determining free and total glycerol, we analysed ten biodiesel samples. The glycerol peak was well resolved from an unknown peak, as shown in the total glycerol determination of a B100 animal-source biodiesel sample (Figure 1). Free glycerol concentrations ranged from 0.02–11.8 mg/kg (n = 2) while total glycerol concentrations ranged from 0.066–188 mg/kg (n = 2). All glycerol concentrations in the biodiesel samples were within the ASTM specifications of <0.02 (200 mg/kg) and 0.24 wt% (2400 mg/kg), respectively. Recoveries of glycerol added at twice the sample concentrations ranged from 92–100%.
Figure 1: Comparison of total glycerol in an aqueous solution of a base-hydrolyzed B100 animal sample a) without, and b) with 80 mg/kg added glycerol. Sample preparation: base-hydrolysis at 95 °C for 1 h, dilute aqueous layer 1:5, filter 0.2 µm. Column: CarboPac MA1 guard and analytical; eluent: 100 mM sodium hydroxide; temperature: 30 °C; flow-rate: 0.40 mL/min; injection volume: 5 µL; detection: PAD, Au, Waveform A.1 Peaks: 1) Unknown; 2) glycerol [(a) 0.54 mg/kg, (b) 1.3 mg/kg].
HPAE-PAD is a sensitive and selective method that does not require the sample derivatization needed for the GC–FID method, and therefore provides a good alternative for determining µg/kg to mg/kg concentrations of glycerol from aqueous extractions of biodiesel samples.
1. Dionex Corporation, Determination of Free and Total Glycerol in Biodiesel Samples by High Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD), Application Note 255, LPN 2571, Sunnyvale, California, USA (2010).
CarboPac and Chromeleon are registered trademarks of Dionex.
Dionex Corporation
1228 Titan Way, P.O. Box 3603, Sunnyvale, California 94088, USA
tel. (408) 737-0700 fax (408) 730-9403
Website: www.dionex.com
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Investigating Plastic Contamination in Olive Oil with GC–MS/MS
January 17th 2025The objective of this study was to investigate contamination by 32 plasticizers in olive oil throughout its production and packaging process. Separation and detection were carried out by gas chromatography tandem mass spectrometry (GC–MS/MS), without the need for pre-concentration steps.
Top Execs from Agilent, Waters, and Bruker Take the Stage at J.P. Morgan Healthcare Conference
January 16th 2025The 43rd Annual Healthcare J.P. Morgan Healthcare Conference kicked off in San Francisco earlier this week. Here’s what top executives from Agilent, Bruker, and Waters, discussed during the event.