Metrohm Application Note
The presented ion chromatographic method is used for the simultaneous determination of HF, HNO 3 , H2SO4, short-chain organic acids and H2SiF6 in acidic texturing baths that are used in the wet chemical etching process of solar cell production. Fluoride, nitrate, sulphate and acetate are determined by conductivity detection after chemical suppression, while the silicon present in the form of hexafluorosilicate is detected spectrophotometrically as molybdosilicic acid after derivatization in the same analysis. The analytical results are validated by titration.
Energy production from renewable sources such as biomass, biogas, biofuels, water, wind and solar power is becoming increasingly important in our energy-hungry society. Particular interest is given to solar energy, which by human criteria is inexhaustible. Solar cells used in photovoltaic units convert the radiation energy in sunlight directly into electric energy.
Solar cells are manufactured from ultrapure mono- or polycristalline silicon wafers whose surface is treated in acid etching baths (also known as texturing baths) before being spiked with foreign atoms (P, B). The etching solutions consist of various acids, which act as an oxidizing agent (HNO3), complexing agent (HF), stabilizer and wetting agent (CH3COOH), or buffers (H3PO4, CH3COOH) and determine the surface structure and thus the efficiency of the solar cells. The replenishment of components used up in the etching process extends the bath life and saves costs, though it does require knowledge of the exact composition of the bath, especially the concentration of silicon and hexafluorosilicate. By using titration and ion chromatography (IC), it is possible to determine the key components quickly and precisely.
Figure 1: 850 Professional IC Anion â MCS and 858 Professional Sample Processor.
This article describes an ion chromatographic method that separates all relevant components in the bath on an anion-exchange column and identifies them by dual detection in a single run. After suppressed conductivity detection of the acid anions, the undissociated silicic acid reacts in a post-column reaction (PCR) to form molybdosilicic acid, which is determined spectrophotometrically at 410 nm. The concentrations of fluoride and hexafluorosilicate are determined by way of a simple stoichiometric calculation that is performed by the chromatography software.
a) Instrument setup
b) Reagents and eluent
The standard solutions were prepared with CertiPUR standards from Merck (SiO2 in NaOH; solutions of NaF and NaNO3 in ultrapure water) and the TraceCERT standard from Fluka (acetate solution). All the standard and eluent solutions were prepared with ultrapure water with a specific resistance of more than 18 MΩ·cm. Etching bath samples were provided by a solar cell manufacturer from Germany.
In the wet chemical etching of silicon surfaces, nitric acid is used to oxidize silicon to form silicon dioxide which is further etched by hydrofluoric acid.
3 Si + 4 HNO3 + 18 HF → 3 H2SiF6 + 4 NO + 8 H2O
During the etching process, the concentrations of HF and HNO3 in the etching bath decrease and the concentrations of water and hexafluorosilicate increase. To ensure a constant etching rate and surface properties, the etching bath can be regenerated a few times by subsequent replenishment of spent acids. The increasing concentration of H2SiF6, however, limits the number of possible recycling cycles. This requires semi-continuous monitoring of the bath components, which can be achieved conveniently by automated ion chromatography.
The acid anions present in the etching bath — mainly fluoride and nitrate, though sometimes also sulphate and acetate — are separated under alkaline elution conditions and determined by conductivity detection (Figure 2). In the alkaline eluent, the hexafluorosilicate is converted into orthosilicic acid which is undissociated and therefore "invisible" in the conductivity detector.
Figure 2: Conductivity chromatogram of a simulated etching bath with 25 mg/L fluoride, 20 mg/L acetate and 10 mg/L nitrate. The undissociated orthosilicic acid is not recorded in the conductivity detector.
Na2SiF6 + 4 NaOH → Si(OH)4 + 6 NaF
The undissociated orthosilicic acid is determined by way of post-column reaction with an acid molybdate solution and subsequent UV/vis detection at 410 nm (Figure 3).
Figure 3: UV/vis chromatogram of a 10 mg/L silicic acid standard. Silicic acid is derivatized to molybdosilicic acid which is then detected spectrophotometrically.
H4SiO4 + 12 MoO42- + 24 H+ → H4[Si(Mo3O10)4] + 12 H2O
The injection of SiF62- produces a fluoride peak in the conductivity detector and a silicate peak in the UV/vis detector. The mass balance derived from the respective peak areas confirms that the concentration of SiF62- results stoichiometrically from the determined fluoride and silicate concentrations, provided there are no other sources of fluoride or silicate present. Thus the concentration of free HF can be calculated as the difference between the total fluoride concentration and the fluoride concentration from the hexafluorosilicate:
[HF] = [F– ]total — [F– ]hexafluorosilicate
After being diluted at ratios between 1:1000 and 1:5000, four samples from different texturing baths are analysed for their constituents by using the above IC method with dual detection. Figure 4 shows the chromatograms of etching bath sample 1 obtained by conductivity (a) and UV/vis (b) detection.
Figure 4: (a) Conductivity and (b) UV/vis chromatograms of the sample of etching bath 1 with 1:2000 dilution. The chromatographic parameters are the same as those of the prior chromatograms.
Table 1 provides an overview of the concentrations of the relevant bath components determined by ion chromatography with dual detection. For comparison, the concentrations obtained by titration are also shown. The potentiometric determination of acid concentrations and H2SiF6 content was carried out using aqueous acid-base titration with 1 mol/L NaOH solution.
Table 1: Comparison of the concentrations of a few selected bath components determined by ion chromatography and titration.
Ion chromatography with dual detection allows determining the concentration of all relevant constituents of texturing baths for solar cell production in less than 30 minutes. The acids consumed in the texturing process can subsequently be replenished in a targeted way. This extends the life of the etching baths, guarantees clean and reproducible wafer surfaces, cuts costs and protects the environment.
1. A. Henssge and J. Acker, Talanta, 73, 220–226 (2007).
2. J. Acker and A. Henssge, Talanta, 72, 1540–1545 (2007).
3. M. Zimmer et al., 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy (2007).
4. G. Bogenschütz, C. Wilde and C. Hack, Pittcon 2009 (http://www.metrohm.com/com/Applications, search for 8.000.6041EN).
Metrohm International Headquarters
Ionenstrasse, CH-9101 Herisau, Switzerland
tel. +41 71 353 85 04
E-mail: aw@metrohm.com
Website: www.metrohm.com
Measuring Procyanidin Concentration in Wines Using UHPLC
January 24th 2025Researchers from the University of Bordeaux (Villenave d'Ornon, France) report the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high performance liquid chromatography (UHPLC) coupled with a ultra-high performance liquid chromatography (Q-TOF) mass spectrometer.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.