A novel orally active insecticidal peptide (OAIP-1) has been isolated from the venom of one of Australia's largest spiders, the Australian tarantula (Selenotypus plumipes) using reversed-phase liquid chromatography (reversed-phase LC) coupled with mass spectrometry (MS). The study was recently published in the journal PLOS ONE.1
A novel orally active insecticidal peptide (OAIP-1) has been isolated from the venom of one of Australia’s largest spiders, the Australian tarantula (Selenotypus plumipes) using reversed-phase liquid chromatography (reversed-phase LC) coupled with mass spectrometry (MS). The study was recently published in the journal PLOS ONE.1
Insect pests are an affliction on the agricultural industry, reducing world crops by 10–14% annually. Margaret Hardy of the University of Queensland, Australia, told The Column that there is a need to develop new environmentally friendly insecticides, driven by the increasing levels of insecticide resistance. Recently developed insecticides are highly selective and specific, often targeting a small number of molecular targets. Evolution of these targets over time eventually renders the insecticide ineffective. Hardy added that “green” insecticides need to be included in integrated pest management (IPM) programmes to limit their environmental impact.
The tarantula injects venom into its prey using a needle-like fang, and so it has been assumed that it is not a source of orally‑active peptides, which are effective when ingested by insects. The group has previous experience with spider venom peptides with insecticidal activity, but this was the first time they had performed this method. “The manuscript describes the first instance of a directed-discovery programme that successfully isolated a novel, orally-active insecticide,” said Hardy.
Venom was collected from Australian tarantulas and subsequently lypophilized. Reversed-phase LC coupled with MS was performed to isolate and analyse toxins within the venom. Around 50 peaks resulted, with one elution faction displaying oral insecticidal action against tested specimens (including mealworms and termites). A 34-residue orally active insecticidal peptide (OAIP‑1) was identified. The structure of the peptide, was determined by nuclear magnetic resonance (NMR) spectroscopy and indicated high thermal and chemical stability. According to the paper, this suggests the potential to produce the peptide via a synthetic pathway.
“Our results are significant because it describes the discovery of the most potent insecticidal peptide published to date; the insecticide shows synergism with another, currently used conventional insecticide; and, because the peptide could be used as part of an IPM programme,“ said Hardy.Hardy added that the group has already filed patents on the technology used and that future work will focus on determining the safety of the peptide for non-targeted species. - B.D.
Reference
M.C. Hardy et al., PLoS ONE8(9), e73136 (2013).
This story originally appeared in The Column. Click here to view that issue.
Measuring Procyanidin Concentration in Wines Using UHPLC
January 24th 2025Researchers from the University of Bordeaux (Villenave d'Ornon, France) report the development and validation of a rapid and quantitative analytical method measuring crown procyanidin concentration in red and white wines using ultra-high performance liquid chromatography (UHPLC) coupled with a ultra-high performance liquid chromatography (Q-TOF) mass spectrometer.
The Next Frontier for Mass Spectrometry: Maximizing Ion Utilization
January 20th 2025In this podcast, Daniel DeBord, CTO of MOBILion Systems, describes a new high resolution mass spectrometry approach that promises to increase speed and sensitivity in omics applications. MOBILion recently introduced the PAMAF mode of operation, which stands for parallel accumulation with mobility aligned fragmentation. It substantially increases the fraction of ions used for mass spectrometry analysis by replacing the functionality of the quadrupole with high resolution ion mobility. Listen to learn more about this exciting new development.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
Testing Solutions for Metals and PFAS in Water
January 22nd 2025When it comes to water analysis, it can be challenging for labs to keep up with ever-changing testing regulations while also executing time-efficient, accurate, and risk-mitigating workflows. To ensure the safety of our water, there are a host of national and international regulators such as the US Environmental Protection Agency (EPA), World Health Organization (WHO), and the European Union (EU) that demand stringent testing methods for drinking water and wastewater. Those methods often call for fast implementation and lengthy processes, as well as high sensitivity and reliable instrumentation. This paper explains how your ICP-MS, ICP-OES, and LC-MS-MS workflows can be optimized for compliance with the latest requirements for water testing set by regulations like US EPA methods 200.8, 6010, 6020, and 537.1, along with ISO 17294-2. It will discuss the challenges faced by regulatory labs to meet requirements and present field-proven tips and tricks for simplified implementation and maximized uptime.