The Application Notebook
Semivolatile calibrations on this column dimension often range from 1.0 to over 100 ng/µL; however, a 0.25 mm ID column usually experiences peak overload as the mass on column approaches 10 ng. As shown in Figure 1, isobars that elute close together-such as benzo[b]fluoranthene and benzo[k]fluoranthene-quickly become unquantifiable as mass on column increases. Under split conditions, the resolution requirement (50% valley) is met for all nine calibration standards, and the peak apices shift less than 0.04 min, indicating only minor peak overload. Conversely, under splitless conditions, the three highest concentration calibration standards fail the resolution criterion. The peak fronting and resulting overlap from column overload make it impossible to generate a linear calibration including these points. Additionally, the peak apex of benzo[b]fluoranthene shifts more than 0.2 min, which could result in an erroneous compound identification.
Analyzing a broad range of semivolatile environmental pollutants at low levels requires a sensitive detector as well as an inert sample pathway. While semivolatiles analysis by methods such as EPA 8270 and EPA 625 typically does not require reporting sub nanogram-on-column concentrations, the latest generation of sensitive mass spectrometers and inert GC columns and inlet liners allow analysts to take advantage of the benefits of split injection while maintaining standard method reporting limits.
To demonstrate the viability of this approach, we installed a 30 m × 0.25 mm × 0.25 µm Rxi®-5ms column (cat.# 13423) in an Agilent 7890B/5977A GC–MS equipped with a 220 V fast ramping oven. Helium carrier gas was used at 1.44 mL/min constant flow with 1.0 µL injections into a 4 mm Precision split inlet liner (cat.# 23305) with wool (10:1 split ratio). Full instrument conditions are available at www.restek.com in chromatogram GC_EV1418.
A nine-point calibration curve was prepared at 0.10, 0.50, 1.0, 5.0, 10, 20, 40, 80, and 120 ng/µL using Restek® certified reference materials. This corresponds to an on-column calibration range of 0.0091 to 11 ng.
The average % RSD for the entire calibration was 7.0%, with only two compounds (2,4-dinitrophenol and benzoic acid) exceeding method criteria when evaluated by response factor (RRF) % RSD. A calibration performance summary for a subset of the compounds that were analyzed is given in Table I.
Table I: Calibration performance evaluation for a subset of semivolatile compounds
Using a 10:1 split ratio and 1.44 mL/min column flow resulted in an inlet flow of ~16 mL/min. This is significantly faster than the inlet flow under splitless conditions and causes the rapid transfer of a narrow analyte band onto the column. Under these conditions, only 9.0% of the injected sample is actually transferred onto the column, meaning the analysis of 20 undiluted samples under split conditions transfers the matrix equivalent of only 1.8 samples run under splitless conditions. Injecting less matrix greatly improves GC column lifetime and instrument uptime. Split injection provides the benefit of reducing matrix, but it also decreases levels of target analytes. Use of a highly inert Rxi®-5ms column and Precision inlet liner helps ensure these compounds reach the sensitive mass spectrometer, so reporting limits can be achieved down to 1.0 µg/L for most compounds in a 1.0 L water sample or 0.066 mg/kg in a 30 g soil sample.
Semivolatile calibrations on this column dimension often range from 1.0 to over 100 ng/µL; however, a 0.25 mm ID column usually experiences peak overload as the mass on column approaches 10 ng. As shown in Figure 1, isobars that elute close together-such as benzo[b]fluoranthene and benzo[k]fluoranthene-quickly become unquantifiable as mass on column increases. Under split conditions, the resolution requirement (50% valley) is met for all nine calibration standards, and the peak apices shift less than 0.04 min, indicating only minor peak overload. Conversely, under splitless conditions, the three highest concentration calibration standards fail the resolution criterion. The peak fronting and resulting overlap from column overload make it impossible to generate a linear calibration including these points. Additionally, the peak apex of benzo[b]fluoranthene shifts more than 0.2 min, which could result in an erroneous compound identification.
Figure 1: Extracted ion chromatogram overlay showing resolution of benzo[b]fluoranthene (peak 1) and benzo[k]fluoranthene (peak 2) when 0.1-120 ng/µL calibration standards are analyzed by split (top) and splitless (bottom) injection. The elevated gain factor for split analysis improves low-level sensitivity, but can cause detector overload for compounds with a strong molecular ion response, like these PAHs.
Split injection is a viable alternative to splitless injection for semivolatiles analysis. When coupled with a sensitive MS detector and highly inert analytical column and inlet liner, reporting limits can be achieved with the benefits of reduced matrix per injection, longer column lifetimes, and less downtime for maintenance.
Restek Corporation
110 Benner Circle, Bellefonte, PA 16823
tel. (800) 356-1688, fax (814) 353-1309
Website: www.restek.com
LC–MS/MS Quantification of Plasma Proteins in Elephant Seals to Advance Wildlife Conservation
November 12th 2024Liquid chromatography and tandem mass spectrometry (LC–MS/MS) was used to show that repeated stress can cause delayed but sustained changes in blood plasma proteins associated with water conservation, immune responses, fat metabolism, insulin sensitivity, iron recycling, and hormone transport in elephant seals. Some of these changes may be novel markers of recent and chronic stress exposure in marine mammals.
AI and GenAI Applications to Help Optimize Purification and Yield of Antibodies From Plasma
October 31st 2024Deriving antibodies from plasma products involves several steps, typically starting from the collection of plasma and ending with the purification of the desired antibodies. These are: plasma collection; plasma pooling; fractionation; antibody purification; concentration and formulation; quality control; and packaging and storage. This process results in a purified antibody product that can be used for therapeutic purposes, diagnostic tests, or research. Each step is critical to ensure the safety, efficacy, and quality of the final product. Applications of AI/GenAI in many of these steps can significantly help in the optimization of purification and yield of the desired antibodies. Some specific use-cases are: selecting and optimizing plasma units for optimized plasma pooling; GenAI solution for enterprise search on internal knowledge portal; analysing and optimizing production batch profitability, inventory, yields; monitoring production batch key performance indicators for outlier identification; monitoring production equipment to predict maintenance events; and reducing quality control laboratory testing turnaround time.
Exploring The Chemical Subspace of RPLC: A Data-driven Approach
November 11th 2024Saer Samanipour from the Van ‘t Hoff Institute for Molecular Sciences (HIMS) at the University of Amsterdam spoke to LCGC International about the benefits of a data-driven reversed-phase liquid chromatography (RPLC) approach his team developed.