The separation of intact glycoproteins presents a great challenge because one glycoprotein can exhibit many isoforms with close physiochemical properties. As a result, it is difficult to study them in isolation. A team of chemists from Nanjing University, China, have tested a polymeric weak anion exchange (WAX) monolithic capillary to assess the high resolution separation of glycoprotein isoforms, to see whether this provides the desired results.
The separation of intact glycoproteins presents a great challenge because one glycoprotein can exhibit many isoforms with close physiochemical properties. As a result, it is difficult to study them in isolation. A team of chemists from Nanjing University, China, have tested a polymeric weak anion exchange (WAX) monolithic capillary to assess the high resolution separation of glycoprotein isoforms, to see whether this provides the desired results.1
First they prepared a base monolith through ring-opening polymerization between tris(2,3-epoxypropyl)isocyanurate and tri(2-aminoethyl). This was then modified through a reaction with an aqueous ammonia solution to convert the unreacted epoxide moieties into primary amino groups. The prepared monolithic capillary was characterised by morphology, pore size, hydrophilicity and reproducibility.
Various versions of the monolith were produced by changing the ratio of the two molecules, the temperature of the reaction and the concentration of the pore-generating molecule. The performance of the monolith capillary was then evaluated using several typical glycoproteins as mode analytes. Under the optimized separation conditions, the tested glycoproteins were all resolved into distinct glycoforms. The monolith’s separation ability was compared with capillary zone electrophoresis (CZE) and revealed that the WAX column separated more glycoforms, both consistently and at a faster speed, although the resolution of some glycoprotein isoforms decreased.
Reference
1 Zhen Liu et al., J. Chromatogr. A, September 2011, doi: 10.1016/j. chroma 2011.08.079
This story originally appeared in The Column. Click here to view that issue.
Measuring Lavender Essential Oil’s Effect on Cancerous Tumors with GC-MS
January 15th 2025A recent study aimed to investigate the impact of lavender essential oil (LEO) and of its terpenic components on the properties of glioblastoma (GBM) cells in an in vitro model. The study demonstrated that LEO induces a proliferation slowdown and an impairment of cell migration of GBM cells besides reducing oxidative stress.
The Complexity of Oligonucleotide Separations
January 9th 2025Peter Pellegrinelli, Applications Specialist at Advanced Materials Technology (AMT) explains the complexity of oligonucleotide separations due to the unique chemical properties of these molecules. Issues such as varying length, sequence complexity, and hydrophilic-hydrophobic characteristics make efficient separations difficult. Separation scientists are addressing these challenges by modifying mobile phase compositions, using varying ion-pairing reagents, and exploring alternative separation modes like HILIC and ion-exchange chromatography. Due to these complexities, AMT has introduced the HALO® OLIGO column, which offers high-resolution, fast separations through its innovative Fused-Core® technology and high pH stability. Alongside explaining the new column, Peter looks to the future of these separations and what is next to come.
SPE-Based Method for Detecting Harmful Textile Residues
January 14th 2025University of Valencia scientists recently developed a method using solid-phase extraction (SPE) followed by high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC–HRMS/MS) for detecting microplastics and other harmful substances in textiles.