Tony Taylor

Tony Taylor

Tony Taylor is Group Technical Director of Crawford Scientific Group and CHROMacademy. His background is in pharmaceutical R&D and polymer chemistry, but he has spent the past 20 years in training and consulting, working with Crawford Scientific Group clients to ensure they attain the very best analytical science possible. He has trained and consulted with thousands of analytical chemists globally and is passionate about professional development in separation science, developing CHROMacademy as a means to provide high-quality online education to analytical chemists. His current research interests include HPLC column selectivity codification, advanced automated sample preparation, and LC–MS and GC–MS for materials characterization, especially in the field of extractables and leachables analysis.

Articles by Tony Taylor

There has been much written about the use of nitrogen as a carrier gas for capillary GC. Formerly, to say it wasn’t any good. Latterly to say that it’s pretty good and a better alternative to Helium than hydrogen from a practicality standpoint.

When was the last time you reported your results with an estimate of the error associated with the data? You don’t need to because your method is performing within the levels defined by various agencies and which were confirmed by your validation and your daily QC checks. The person for whom you are producing the data is aware of these tolerances and therefore inherently appreciates the associated precision of the data and can make judgements based on this. Not in the world I work in!

If you use SPE in your work, then most likely it’s very important to the success of your applications and it’s proper implementation will be key to the performance of your analyses. However, SPE protocols are “variable in quality” (I’ve been as I kind as I can there!) and this variability appears to come from some common issues, misunderstandings and, frankly, ignorance of the mechanisms which are in play.

Equation1_web.jpg

Here, we concentrate on one particularly useful equation that allows us to make changes to an analytical system to improve throughput or efficiency, while retaining the selectivity of the original method.

LCGC5_i2.jpg

Temperature affects not only retention but also relative retention in gas chromatography (GC) and therefore, when we change temperature, we also change the selectivity of the separation. This is true as we alter the isothermal separation temperature, but also as we change the slope of the temperature program gradient.

I got into a discussion with a learned colleague recently regarding the relationship between peak height and flow rate in gradient HPLC. We haven't really resolved the discussion, there are suggestions regarding "peak focussing," the number of column volumes in relation to the gradient volume (number of column volumes per minute), increases in efficiency etc.