All News

Agilent Technologies and Strand Scientific Intelligence have announced that they will be teaming up to expand the scope of the Agilent GeneSpring bioinformatics system across multiple life-science disciplines, drive future innovation and deliver new channels for accessing the software and customer support.

Sea water screening

The US Environmental Protection Agency (EPA) has published two rapid screening methods for chemical dispersants in sea waters using Waters ACQUITY UPLC/Quattro Premier XE (UPLC?MS?MS).

Desty Memorial award

Dr Maria-Magdalena Titirici from The Max Planck Institute of Colloids and Interfaces has been awarded the 15th Desty Memorial award for her work on the use of thermo responsive polymers in reverse phase chromatography.

17stomatalites-689052-1408640229099.jpg

Finding photosynthesis

The accidental discovery of a new form of chlorophyll has challenged expert?s understanding of the limits of photosynthesis.

One in every five pounds in the UK economy is dependent on developments in chemistry research, according to a new report commissioned by the Royal Society of Chemistry and the Engineering and Physical Sciences Research Council.

i4-697763-1408634828019.jpg

In recent years water-soluble polymers are gaining more and more interest in different applications. The molecular weight distribution of polymers is usually characterized by size exclusion chromatography (SEC) coupled with refractive index, viscometric or laser light scattering detection. Recent advances in SEC comprise semi-micro SEC and the design of linear columns providing wide molecular weight separation ranges and near-linear calibrations. We describe the separation of water-soluble polymers with a new generation of linear, polymer-based, semi-micro SEC columns using the compact EcoSEC SEC system.

i3-691433-1408638647024.gif

With recent research, the University of Oviedo's analytical spectrometry research group has taken a step closer to the absolute quantification of proteins. Quantification based upon isotope dilution mass spectrometry of sulfur is hampered by gas-based polyatomic interferences. By implementing a quadrupole inductively coupled mass spectrometer with collision/reaction cell technology, the group has been able to overcome the issues and has increased reliability while optimizing the efficiency of its analyses.

i4-691438-1408638632641.gif

An effective metabolite identification study should ideally include both qualitative and quantitative information that for both identifying metabolites, and determining the rate of clearance and the metabolic routes of the parent drug. Liquid chromatography–mass spectrometry (LC–MS) is considered the standard analytical technique for metabolite identification studies. To date, however, qualitative and quantitative information has always been obtained from two separation platforms: quadrupole time-of-flight (QTof) MS for the exact mass full-scan qualitative study, and tandem quadrupole MS for the multiple reaction monitoring (MRM) quantitative study. With advancements to QTof instrumentation, specifically, recent improvements in sensitivity and dynamic range, it is now possible to perform both qualitative and quantitative experiments on a single QTof mass spectrometer. This article describes a workflow that allows simultaneous qualitative and quantitative metabolite identification studies to be..

i4-691434-1417780546936.gif

A new time-of-flight mass spectrometer was evaluated for performing simultaneous metabolic stability measurement and metabolite identification with ultrahigh-pressure liquid chromatography. Six representative compounds (clomipramine, diclofenac, imipramine, haloperidol, verapamil, and midazolam) were incubated in rat liver microsomes at a more physiologically relevant substrate concentration (1 ?M). High-resolution full-scan and product-ion spectra were acquired in a single injection using generic methodology. Quantitative clearance of the parent was measured using the full-scan data. Major metabolites were identified using the accurate mass product ion spectra. High scanning speed allowed for a sufficient number of data points to be collected across the chromatographic peak for quantitative analysis. Sensitivity was sufficient for obtaining meaningful kinetics with a 1 ?M initial substrate concentration.

i4-691437-1408638635381.gif

This article introduces the advantages of accurate mass high-resolution mass spectrometry LC–MS (HRMS) coupled to the dried blood spot (DBS) technique for fast PK applications in a discovery environment. Compared with the established norm of plasma bioanalysis using triple quadrupoles, HRMS coupled to DBS is a viable alternative. The benefit is access to critical new information (HRMS bioanalysis) and significantly less stress on the animal (DBS), both factors that potentially improve the quality of early PK data.

i4-691440-1416910887975.gif

The threat to human health posed by the recent oil spill has created a pressing need for high-throughput seafood analysis to ensure that it does not contain dangerous levels of polycyclic aromatic hydrocarbons (PAHs) and to allow the earliest possible reopening of the fisheries. Adapting QuEChERS sample preparation technology to this application, combined with the use of preconfigured PAH gas chromatography–mass spectrometry analysis systems, can provide the ability to process in a timely manner the enormous number of samples that will be generated by the ongoing testing program.

i4-691436-1408638637719.gif

A high-throughput LC–MS method using core-shell UHPLC columns to screen for a panel of 11 drugs of abuse (expanded SAMHSA) was developed. The corresponding SPE method allowed the reproducible separation and quantitation of these 11 components in less than 2 min. This method demonstrates the power of new-generation HPLC media as well as some of the factors one must consider when developing such methods for LC–MS analysis.

i4-691435-1408638640160.gif

The analysis of urine for drugs of abuse via chromatographic methods is commonplace but can be complicated by high matrix effects and frequent coelution. Novel time-of-flight mass spectrometry in combination with sophisticated deconvolution software was tested and found to provide increased confidence in results due to the high sensitivity and quality of spectra achieved.