The packed particle bed format still rules LC columns, but advances continue in monoliths. Meanwhile, newer formats are on the horizon, including microfabricated columns and 3D printed columns. This article provides a critical review of all these technologies and demonstrates how further development of chromatographic columns will be of paramount importance in the future.
In this extended special feature to celebrate the 30th anniversary edition of LCGC Europe, leading figures from the separation science community explore contemporary trends in separation science and identify possible future developments. We asked key opinion leaders in the field to discuss the current state of the art in liquid chromatography instruments.
Describes the preparation of a reversed-phase monolithic column with an optimized porous structure to separate intact proteins using LC–MS.
Describes the preparation of a reversed-phase monolithic column with an optimized porous structure to separate intact proteins using LC–MS.
An optimization strategy to obtain the best possible performance in the shortest analysis time for comprehensive off-line 2D-LC.
Multidimensional liquid chromatography (MDLC) techniques are essential for the separation of highly complex proteomic samples. Advantages of off-line MDLC techniques over on-line approaches include high flexibility in choice of column dimensions and mobile-phase compositions, and the ability to reanalyse sample fractions. Here we present a fully automated off-line two-dimensional chromatographic approach for the analysis of proteomic samples using an UltiMate 3000 system optimized for proteomics MDLC.