Environmental Analysis

Latest News


i4-531036-1408662437417.jpg

Liquid chromatography with tandem mass spectrometry (LC–MS-MS) led to a revolution in environmental testing. The coupling of liquid chromatography with tandem mass spectrometry created a powerful analytical tool for the analysis of emerging environmental contaminants. Pharmaceuticals and personal care products, perfluorinated compounds, brominated flame retardants, and disinfection byproducts were chosen as examples to illustrate the use of this new technique in environmental analysis.

Seeing Green

Hian Kee Lee speaks with Alasdair Matheson about "environmentally friendly" sample preparation techniques.

i4-479365-1408664971539.jpg

Contamination of public buildings with PCBs used as softeners in the 1970's in sealants and wall and ceiling paints can still be detected. If certain threshold values in indoor air are exceeded the source has to be decontaminated. This requires an effective and fast determination of the PCB concentration in indoor air. Thermodesorption GC–MS is a method especially suitable for this purpose. Polychlorinated Biphenyls (PCBs) are highly toxic and carcinogenic chemical substances. Although first prepared in 1864, they have been industrially manufactured since 1929. The highest production amounts worldwide were recorded in the 1960s and the beginning of the 1970s. In the 1970s their use as additives for building materials was widespread because of their flame inhibiting and noise reduction properties.

i1-479364-1408664974400.jpg

Pesticides are widely used by farmers to control pests, weeds and molds that would otherwise decrease crop production. While this has significantly increased worldwide food productions, these same pesticides pose health risks to humans. The restrictions for specific pesticides differ from one country to the next and as world trade increases, the potential threat to other countries' populations increases. For this reason, pesticides and other food related allergens are currently the subjects of increasing scrutiny and regulation.

i4-457022-1408662758582.jpg

In addition to the universal detectors used in gas chromatography (GC), selective detectors have also played an important role in the rapid spreading of the utilization of the technique. Probably the most important selective GC detector is the electron-capture detector, with a very high sensitivity to organic compounds containing chlorine and fluorine atoms in their molecules. The electron-capture detector had a vital role in environmental protection and control - its use helped to prove the ubiquitous presence of chlorinated pesticides in nature and halocarbons in our atmosphere, and made us aware of the global extent of pollution. It was the electron-capture detector that made concentration ranges of parts-per-billion (ppb: 1:109) or even parts-per-trillion (ppt: 1:1012) detectable. Today, these terms are used routinely without realising how formidable such a sensitivity really is: 1 ppb means that a spaceship (or a UFO, depending upon one's inclination) could pick up a particular family of six from..

i8_t-447627-1416913670225.jpg

Triclosan is an ubiquitous antibacterial, antimicrobial chemical found in numerous consumer health care products today. This article demonstrates that triclosan can be quantitatively determined in commercial hand soaps using reversed-phase solid-phase disk extraction coupled to quantification using capillary gas chromatography-atomic emission detection while avoiding emulsions.

i1-435031-1408659431719.jpg

Suppressed conductivity detection is a well-developed method for detecting charged species. Reversed-phase high-performance liquid chromatography (RP-HPLC) is a well developed method of separating substances on the basis of hydrophobicity. There are some situations where it is advantageous to use these two methods together. Perfluoro-acids (PFOAs) are one class of compounds that are ionic, hydrophobic and have low UV absorbance and are, therefore, suited to this combination.

i1-435032-1408659427471.jpg

Polycyclic aromatic hydrocarbons (PAHs) are commonly found throughout the environment in soil, water and adsorbed to fine particulate matter in air. Of the 16 common PAHs, 7 have been classified as animal carcinogens by the International Agency for Research on Cancer (IARC). Resulting from this classification, PAHs are monitored and regulated in the environment.

i9_t-402245-1408668709242.gif

Traditional methods for the sample preparation of insoluble solid materials have represented one of the more time consuming and labour-intensive efforts in analysis. In this instalment of "Sample Prep Perspectives", Ron Majors examines modern sample preparation methods for solids that often involve increased temperature and higher pressure to speed up the extraction process. In addition, modern sample preparation methods have been automated to relieve analysts of the drudgery associated with traditional methods. Here, he reports on automated Soxhlet extraction, supercritical fluid extraction, pressurized fluid extraction–accelerated solvent extraction, and microwave-assisted extraction and updates earlier coverage.

Capillary extraction (CEx) is used to study the solventless in-tube extraction of naphthalene, acenaphthene, phenanthrene, fluoranthene, chrysene, benzo(a)pyrene and coronene in aqueous samples prepared by analyte spiking into clean waters or, as an alternative, by using the generator–column method of sample preparation. Analysis of laden extractors is conveniently performed by high-resolution gas chromatography (GC), with a flame-ionization detector (FID). Extraction set-ups and main extraction variables are investigated from a practical point of view. For 2- to 4-ring polycyclic aromatic hydrocarbons (PAHs), equilibrium times are within a few minutes, analytical sensitivity is in the parts-per-billion (ppb) range and reproducibility is better than 10% relative standard deviation (RSD) (n = 6). Coronene behaviour is unique and presumably determined by extreme hydrophobicity and thus very negligible aqueous solubility: in-tube extraction of coronene seems possible only if starting from..

i3-389398-1408682807836.gif

Glyphosate [N-(phosphonomethyl) glycine] is a broad spectrum, non-selective herbicide, which acts by inhibiting the shikimic acid pathway in plants. Recent studies have raised global health and environmental concerns about glyphosate's use.1 Glyphosate readily breaks down into aminomethyl phosphonic acid (AMPA) in the environment; requiring accurate measurement. Both highly polar compounds present an analytical challenge to the chromatographer (Figure 1). Typical silica based reversed-phase C18 columns experience difficulty with the retention of such polar compounds, and may generate non-resolved co-eluting peaks, often with polar analytes eluting in the void volume. Traditional analytical methods require complex eluents and time consuming derivatization steps to achieve retention on a reversed-phase support.

i12_t-371554-1408686775006.gif

Capillary extraction (CEx) is used to study the solventless in-tube extraction of naphthalene, acenaphthene, phenanthrene, fluoranthene, chrysene, benzo(a)pyrene and coronene in aqueous samples prepared by analyte spiking into clean waters or, as an alternative, by using the generator–column method of sample preparation. Analysis of laden extractors is conveniently performed by high-resolution gas chromatography (GC), with a flameionization detector (FID). Extraction set-ups and main extraction variables are investigated from a practical point of view. For 2- to 4-ring polycyclic aromatic hydrocarbons (PAHs), equilibrium times are within a few minutes, analytical sensitivity is in the parts-per-billion (ppb) range and reproducibility is better than 10% relative standard deviation (RSD) (n = 6). Coronene behaviour is unique and presumably determined by extreme hydrophobicity and thus very negligible aqueous solubility: in-tube extraction of coronene seems possible only if starting from oversaturated..

Gas chromatography-mass spectrometry using a single-quadrupole instrument is the workhorse technique of the environmental lab. It normally falls short for applications that require high mass accuracy. It is shown here that with proper calibration techniques, this technique can indeed readily obtain high mass accuracies to within a few millidaltons and become a powerful tool for unknown compound identification.

i12_t-302246-1408683546864.gif

A method for the identification of key volatile organic compound (VOC) markers associated with infection by Neisseria meningitidis bacteria by gas chromatography–mass spectrometry (GC–MS) was developed. Headspace samples of bacterial VOCs were trapped on triple-sorbent bed tubes and then thermally desorbed into a laboratory GC–MS system for separation. Identification was carried out by comparison of GC retention time and electron ionization mass spectra to the National Institute of Standards and Technology (NIST) database. Further confirmation was obtained by GC–MS of known standard chemicals. A total of 75 VOCs were detected, five of which can be considered key VOC markers for Neisseria meningitidis. These peaks were identified as 1,2-dimethylcyclopropane, 2-methylpropanal, methacrolein, N-2-dimethyl-1-propanamine, and 3-methylbutanal by the NIST database.