Environmental Analysis

Latest News


Drinking Water.jpg

Per- and polyfluoroalkyl substances (PFAS) are chemicals found in fire‑fighting foams and consumer products requiring water-resistant and stain-repellent properties. As a result of their unique chemical properties and long‑term widespread usage, these chemicals are an emerging human health concern. US Environmental Protection Agency (EPA) released analytical methods for PFAS measurement in 2009 and most recently in November of 2018. In this article, data generated using these methods with allowed analytical modifications is presented and demonstrates robustness and reproducibility while achieving low level detection limits in drinking water.

figure 1 L1558710008343.png

Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (oxy-PAHs) are highly toxic carcinogens that present a significant hazard to human health. To fully understand the risks associated with exposure to PAHs, robust analytical methods for their detection are required. Mass spectrometry coupled with ultrahigh-performance liquid chromatography (UHPLC–MS) has proven to be a powerful technique for the analysis of these compounds. This article looks at the benefits of using atmospheric-pressure chemical ionization (APCI) in the place of traditional electrospray ionization (ESI) for the detection of oxy-PAHs.

In this interview, Thomas Letzel of the Technical University of Munich considers the current state of water analysis, looking at recommended techniques, the growth of nontargeted screening, and multi-disciplinary collaboration.

figure 1 L.png

Traditional sample preparation method development can often be laborious and costly. Understanding the underlying concepts of the technique can help food and environmental laboratories develop methods in notoriously complex matrices, faster, more efficiently, and provide better chromatography. With the presence of many unique matrices and analytes, methods such as QuEChERS, supported liquid extraction (SLE), or solid-phase extraction (SPE) provide the necessary adaptability for many types of extractions. With customizable methods to work with unique matrices and with the addition of automation, extractions can be improved to save time and provide consistent recoveries.

Enviro.jpg

The Royal Society of Chemistry’s Environmental Chemistry Group, Water Science Forum, and the Separation Science Group Joint Meeting will be held on Friday 22 February 2019 in the Science Suite of the Royal Society of Chemistry, in Burlington House, Piccadilly, London, UK.

styr small.png

When a company wishes to commercialize a new pesticide, they must conduct environmental studies and develop analytical methods capable of detecting the pesticide, and its metabolites, in soil and water samples. The methods must be robust and rugged, for easy use in routine analysis. James Stry, a principal investigator at FMC Agricultural Solutions, recently talked to LCGC about best practices he and his team have established for developing such methods, including approaches to meeting a variety of requirements of regulatory bodies, simplifying sample preparation, dealing with matrix effects, choosing an ionization method, and streamlining method development.

figure 1 L.png

This article describes a direct analysis of glyphosate, aminomethylphosphonic acid (AMPA), glufosinate, and 3-methylphosphinicopropionic acid (MPPA) in water by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) without derivatization. The chromatographic separation was performed using a hydrophilic interaction liquid chromatography (HILIC) column and typical LC–MS mobile phases. Method performance was evaluated, showing excellent results. The low limits of quantification (LLOQs) obtained meet the requirements of EU guidelines and could also be used to get an agreement in France where regulations require lower LLOQs (NOR: DEVL1703763V).

The Column spoke to Núria Fontanals, a senior researcher at the Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Spain, about her work investigating the impact of artificial sweeteners as environmental pollutants using hydrophilic interaction chromatography (HILIC) and the broader role of HILIC in environmental analysis.

shutterstock_1071386384.jpg

Snezana Agatonovic-Kustrin, a professor in pharmaceutical chemistry at Monash University, in Kuala Lumpur, Malaysia, spoke to The Column about the development of a method to evaluate antidiabetic and antioxidant activity in marine algae using high-performance thin-layer chromatography (HPTLC)-direct bioautography.

shutterstock_1071587357.jpg

I do not remember the application, but I remember very clearly Professor McNair telling us that soil is one of the most challenging sample matrices, if not the toughest, from which to perform analytical determinations. Sources indicate the composition of soil ideal for growing plants to be 25% air, 25% water, 45% minerals, and 5% organic matter. That does not seem like a daunting makeup, but the reality is that the relative proportion of the constituents can vary dramatically.

figure 1 L1526917343287.png

Per- and polyfuorinated alkyl substances (PFAS) are a rapidly growing environmental and human health concern. Owing to their broad commercial use, chemical stability, and bioaccumulation potential, these compounds are widely dispersed in the environment and can cause exposure through many potential pathways. To adequately estimate exposure risks, analytical methods are required that can measure low levels of PFAS compounds in many types of matrices. As will be described, recent advances in solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC–MS/MS) have enabled the identification and quantification of a large number of PFAS compounds at low concentration (

Andrew Turner FE-4.jpg

LCGC Europe spoke to Andrew Turner, Principal Chemist in the Food Safety Group at the Centre for Environment, Fisheries, and Aquaculture Science (Cefas) in Weymouth, UK, about developing a simple ultrahigh-pressure liquid chromatography tandem mass spectrometry (UHPLCÐMS/MS) method for the quantitation of microcystins and nodularin in various sample matrices.

Chemical Fingerprinting.jpg

The chemical analysis of organic compounds in environmental samples is often targeted on predetermined analytes. A major shortcoming of this approach is that it invariably excludes a vast number of compounds of unknown relevance. Nontargeted chemical fingerprinting analysis addresses this problem by including all compounds that generate a relevant signal from a specific analytical platform and so more information about the samples can be obtained. A DHS−TD−GC−MS method for the fingerprinting analysis of mobile VOCs in soil is described and tested in this article. The analysis parameters, sorbent tube, purge volume, trapping temperature, drying of sorbent tube, and oven temperature were optimized through qualitative and semiquantitative analysis. The DHS−TD–GC−MS fingerprints of soil samples from three sites with spruce, oak, or beech were investigated by pixel-based analysis, a nontargeted data analysis method.

enviro Q&A.jpg

Mira Petrovic from the Catalan Institute for Water Research (ICRA) in Girona, Spain, reveals the advantages and practical applications of a novel method she developed for the multiresidue trace analysis of pharmaceutical compounds and their corresponding metabolites and transformation products using dual-column liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS).

mira 2017a.jpg

Mira Petrovic from the Catalan Institute for Water Research (ICRA) in Girona, Spain, reveals the advantages and practical applications of a novel method she developed for the multiresidue trace analysis of pharmaceutical compounds and their corresponding metabolites and transformation products using dual-column liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS).

In the environmental analytical chemistry literature, the topic of matrix interferences and matrix effects has not been addressed in a fundamental way. Here, we examine which methods appear to have a tendency for matrix interference and suggest ways to reduce the problem.

shale.jpg

As part of the Earth Day celebration in Dallas, Texas, USA, earlier this year, the Collaborative Laboratories for Environmental Analysis and Remediation (CLEAR) at U.T. Arlington hosted the first annual Responsible Shale Energy Extraction (RSEE) symposium. Even though Kevin Schug and his group have been very involved in this conversation for the past several years, several points stood out.

dolphins.jpg

Monitoring the endocrine status of marine mammals can give valuable information to researchers. Overall health, health issues, and an animal’s pregnancy status can all be deduced from the careful analysis of steroid hormones. However, gaining such data is not easy. The difficulty of obtaining blood samples in the wild necessitates the use of alternative matrices, such as blubber, that in turn provide a number of analytical challenges. Aiming to solve these issues a team of researchers from the National Institute of Standards and Technology (NIST) have developed a novel method using liquid chromatography tandem mass spectrometry (LC–MS/MS) to analyze blubber obtained through remote sample collection. Ashley Boggs from NIST spoke to The Column about the benefits of this newly developed technique and its potential wider application in animal research and management.

Cryogen.jpg

This study describes the gas chromatography–mass spectrometry (GC–MS) analysis of trace-level “air toxics” in humidified cannister air, using cryogen-free preconcentration technology. We show that this method is able to detect 65 target compounds ranging from propene to naphthalene, with method detection limits as low as 0.7 pptv in SIM mode, making it compliant both with standard TO-15 methods, and with “trace TO-15” methods stipulating lower detection limits.

environmental concerns.jpg

You don’t have to look far to find headlines such as “PFAS Chemicals in Drinking Water Prompts Restrictions” (1) or “Toxic Algae Discovered in Waterways off Lake Tahoe” (2). These two examples highlight key environmental concerns, and laboratories are feeling the demands to perform more of these tests. The first headline relates to the pollution from per- and polyfluorinated alkyl substances (PFASs) and the latter is attributed to the problems of microcystins and nodularins in water. This article will look into analytical workflows that can be applied to the testing of these “in demand” compounds.