Wolfgang Radke

Wolfgang Radke studied polymer chemistry in Mainz, Germany, and Amherst, Massachusetts, USA, and is head of the PSS contract analysis department. He is also responsible for instrument evaluation and for customized trainings. PSS is now part of Agilent.

Articles by Wolfgang Radke

Determination of molar mass distributions and the molar mass averages derived therefrom are the main objectives of gel permeation chromatography/size-exclusion chromatography (GPC/SEC) analysis. But what is the meaning of these averages and how are they influenced by the setting of baselines and integration limits? This instalment of Tips and Tricks in GPC/SEC will try to provide a better understanding.

Often incorrect conclusions on molar mass and molar mass distribution are drawn by simply looking at a chromatogram. However, certain valuable information can be obtained directly from the chromatogram. This instalment of Tips & Tricks will deal with some common misinterpretations of chromatograms.

Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) columns are filled with porous particles differing in particle and pore sizes. Typical particle sizes in analytical GPC/SEC range from sub-2-µm particles applied in oligomer and protein separations to approximately 20 µm for separations of ultrahigh molar mass macromolecules (1,2). While the effect of combining columns of different pore sizes has previously been discussed in GPC/SEC Tips & Tricks (3,4), the effect of combining columns of different particle sizes has not been addressed before.

Tips & tricks.jpg

While gel permeation chromatography/size-exclusion chromatography (GPC/SEC) of uncharged molecules in organic eluents in most cases is a straightforward task, aqueous GPC/SEC of polyelectrolytes usually requires more parameters to be considered and optimized. This instalment of Tips & Tricks explains more.

equation 1.png

The intensity of the light scattering signal depends on concentration, molar mass, and the specific refractive index increment, dn/dc, of the sample. dn/dc therefore usually needs to be known to derive molar masses by gel permeation chromatography/size-exclusion chromatography-light scattering (GPC/SEC-LS). How to overcome the issue of unknown refractive index increments is outlined in this instalment of Tips & Tricks. In particular, a new approach to derive molar masses by GPC/SEC-LS that requires only the molar mass of a reference material, and not the dn/dc of the sample or of the reference material, is introduced.

tips and tricks.jpg

Combinations of detectors are often used in gel permeation chromatography/size-exclusion chromatography (GPC/SEC) to measure absolute molar masses or chemical compositions as a function of elution volume. Such multidetector setups require the correction of the delay volume between the detectors for correct data processing. This instalment of Tips & Tricks explains more.

figure 3.jpg

Experienced gel permeation chromatography/size-exclusion chromatography (GPC/SEC) users know that equilibration of the columns takes much longer than the time needed by the pump to produce a constant flow. An analysis in this phase would clearly yield different results from those achieved after complete equilibration of GPC/SEC columns. Furthermore, false but constant flow rates affect the molar masses derived from a GPC/SEC calibration curve. An internal flow marker can help to increase reproducibility and accuracy of GPC/SEC results.