All News

Offer.png

When you want to adjust a United States Pharmacopeia (USP) method for a different size column or to meet system suitability criteria that fail, how much of a change can you make without revalidating the method?

figure 1 L.png

The quantitative extraction and subsequent purification of trace contaminants from (semi-)solid environmental and food matrices of regular size (that is, a few grams) is still recognized as a challenging task, typically accomplished through relatively complex off-line multistep treatment procedures. When these conventional sample preparation procedures are applied to the treatment of size-limited samples (of less than 1 g), the difficulties increase. This review discusses the different analytical strategies that can be adopted to overcome (or at least reduce) these difficulties when chromatographic techniques are involved for final instrumental determination.

tomatoes.jpg

A novel unit that integrates sampling and analysis for the determination of pest insect sexual pheromones in environmental air using fabric phase sorptive extraction (FPSE) and headspace gas chromatography coupled to mass spectrometry (HSGC–MS) has been developed at the University of Córdoba in Spain.

figure 1 L.png

Molecular mass is one of the central parameters required for product registration. Compared to low molar mass substances, the molar mass determination of macromolecular products is more difficult because the product is a mixture of chains with different lengths and, therefore, molar masses. Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is the standard technique to separate macromolecules by size and to measure the complete molar mass distribution as well as the molar mass averages. This technique therefore provides crucial information for product registration, including REACH.

figure 1 L1496757149140.png

Analysis of residual antimicrobials in animal products is crucially important to ensure food safety. This article presents a simple, fast, and highly sensitive high performance liquid chromatography (HPLC) assay of regulated antimicrobials, as well as sample preparation and purification methods. Twenty-four different analytes of interest were investigated in beef, pork, and chicken meat samples.

Anderson et al..jpg

Successful therapeutic intervention often requires chiral medicines because of the intrinsic chirality of protein drug targets, which consist of L-amino acids. Potency, efficacy, and safety can be highly dependent on the precise stereochemical geometry of the molecules. Determining the biological profile of individual enantiomers in the early stages of drug discovery is important for successful optimization towards clinical candidates. Here we demonstrate the benefits of supercritical fluid chromatography (SFC) with three chiral stationary phases exemplified by high frequency resolution of 41 out of 50 chiral derivatives of eight commonly used drug discovery scaffolds including 1,3-thiazoles, 1,3-benzothiazoles, pyranoquinolones, indoles, and leucolines.

I’m often asked “what reproducibility should I expect to get from my [insert instrument manufacturer and model]?” So, most folks are referring to the repeatability aspects of precision, as in: “what relative standard deviation (usually expressed at %RSD) for peak area or quantitative result should I be able to achieve from repeat injections from a single vial of sample?”

Precise and accurate quantitative analysis based on chromatographic measurements has historically relied very heavily on careful peak integration. Seasoned analysts know that while automated algorithms exist in modern chromatography software, it is a best practice to manually check that the integration points-the points at the beginning and end of a peak, between which the peak will be integrated to obtain a peak area-are appropriately specified.

offer.png

When you want to adjust a United States Pharmacopeia (USP) method for a different size column or to meet system suitability criteria that fail, how much of a change can you make without revalidating the method?

figure 1 l1497003310221.png

In reversed-phase liquid chromatography (LC), C18 alkyl-based stationary phases have been the favourite of method developers. Phenyl stationary phases are an alternative that are thought to benefit from additional π-π mechanisms. Recently, there has been a growing interest in the use of phases based on the biphenyl moiety. This instalment of “Column Watch” looks at the retention mechanisms of biphenyl phases and contrasts them with those of more-common alkyl phases.