Gas Chromatography (GC)

Latest News


Inert GC inlet liners for sample protection are easy to install. Touchless packaging provides protection from cuts or breakage, reducing contamination during installation process.

Incognito.jpeg

Pittcon Report

Incognito observes some unexpected emerging trends at Pittcon 2020.

Ryan Kelly.jpg

LCGC Europe sponsored the 2020 HTC Innovation Award to highlight innovation in separation science. The winner, Ryan Kelly, from Brigham Young University, in Utah, USA, has introduced an impressive array of innovative approaches to advance proteomics research using nano-liquid chromatography–mass spectrometry (nano‑LC–MS), LC–MS, and two‑dimensional (2D)-LC–MS, including the development and application of nanodroplet processing in one pot for trace samples (nanoPOTS). This platform, when combined with nano-LC–MS/MS, can identify more than 3000 protein groups in 10 cells, a greater level of proteome coverage than was previously possible for samples containing 5000 cells.

In-depth knowledge of GC setup is a significant advantage for the user. Here, a checklist is provided for preparation of a GC or GC–MS system prior to analysis work- referencing the actions, checks, tools, and consumable items that might be required.

Beers.jpg

Organosulphur compounds are important substances in the food industry because they can contribute to the flavour impression of a product. The human olfactory system’s sensitivity to sulphur leads to low flavour threshold values, making the analysis of these substances a challenging task. Gas chromatography (GC) with sulphur chemiluminescence detection (SCD) is a highly sensitive and selective technique for the analysis of sulphur compounds in various matrices. Using a range of different beers as an example, an approach is presented to reliably qualify and quantify sulphur components in beverages using headspace sampling and GC–SCD.

Multidimensional chromatography combining HPLC and GC, or LC–GC, sounds simple, but several factors complicate this combination, including solvent compatibility, separation time, and sample concentration.

Although manufacturers ship gas chromatographs with a collection of consumable parts and accessories, a number of other essential items should be on hand in every GC laboratory. What items are needed and how can they be used most effectively?

Thinking Small.jpg

Thinking Small

Pascal Cardinael and Valérie Agasse from the University of Rouen, in Mont‑Saint-Aignan, France, reveal the rationale behind miniaturization and the latest developments in miniaturized gas chromatography (GC).

figure 1.png

Chemical fingerprinting can provide evidence for quality differences resulting from botanical and geographical origins of primary food ingredients, post-harvest practices, production processes (such as traditional versus industrial processes), and the shelf-life evolution of finished products. This article discusses the strategic role and potential of comprehensive two-dimensional gas chromatography (GC×GC) combined with time-of-flight mass spectrometry (TOF-MS) and pattern recognition using template matching for data processing to unravel the quality traits of high-quality food products. Practical examples dealing with high-quality cocoa and extra-virgin olive oil are described.

figure 1-New-1572522327797.png

Chemical fingerprinting can provide evidence for quality differences resulting from botanical and geographical origins of primary food ingredients, post-harvest practices, production processes (such as traditional versus industrial processes), and the shelf-life evolution of finished products. This article discusses the strategic role and potential of comprehensive two-dimensional gas chromatography (GC×GC) combined with time-of-flight mass spectrometry (TOF-MS) and pattern recognition using template matching for data processing to unravel the quality traits of high-quality food products. Practical examples dealing with high-quality cocoa and extra-virgin olive oil are described.

LCE1218_Photo - Ronda Gras.jpg

Is gas chromatography a mature technology? LCGC Europe spoke to Ronda Gras about a range of GC projects she has been working on to extend the scope of the technique, including a multi-hyphenated approach combining three modes of detection, a miniaturized micromachined GC system, and a novel in situ method to detect carbon dioxide in various matrices by incorporating 3D-printing technology in a FID.