Gas Chromatography (GC)

Latest News


figure 1.png

This study describes the analysis of fragranced washing detergent and washing powder using probe-based headspace and immersive sorptive extraction, in conjunction with analysis by thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS). As well as discussing the differences between the two samples, the analyte ranges covered by headspace and immersive sampling are compared.

durian.jpg

The durian fruit is notorious for its unpalatable aroma, and yet the fruit is incredibly popular throughout Southeast Asia and amongst travellers. Holding the title of “the world’s smelliest fruit” attracts attention including that of Martin Steinhaus from the Aroma Research Group at the Deutsche Forschungsanstalt für Lebensmittelchemie (German Research Center for Food Chemistry). He spoke to The Column about his group’s research into the compounds responsible for the fruit’s uniquely unpleasant aroma.

Ron-Majors_web.jpg

LCGC, the leading resource for separation scientists, is proud to announce that Ronald E. Majors and Zachary S. Breitbach are the winners of the 11th annual LCGC Lifetime Achievement and Emerging Leader in Chromatography Awards, respectively. Majors and Breitbach will be honored in a symposium as part of the technical program at the Pittcon 2018 conference in Orlando, Florida, on February 26, 2018.

Jorge Saiz copy.png

The chemical messages that animals use to communicate can trigger a range of responses in members of the same species. The Column spoke to Jorge Saiz from the Centre of Metabolomics and Bioanalysis (CEMBIO) at the University San Pablo CEU, Spain, about his research into the chemical secretions of lizards and the role of gas chromatography–tandem mass spectrometry (GC–MS/MS) in his work.

Fast gas chromatography (GC) has received new attention recently in the form of available enhanced instrument capabilities. What can fast GC do for separations, and how can laboratories take advantage of enhanced separation speeds?

figure 11496851531969.png

Some 50 years after Giddings’s iconic comparison of the separation speed of gas chromatography (GC) and liquid chromatography (LC), the authors revisit this comparison using kinetic plots of the current state‑of‑the-art systems in LC, supercritical fluid chromatography (SFC), and GC. It is found that, despite the major progress LC has made in the past decade (sub-2-µm particles, pressures up to 1500 bar, core–shell particles), a fully optimized ultrahigh-pressure liquid chromatography (UHPLC) separation is still at least one order of magnitude slower than capillary GC. The speed limits of packed bed SFC are situated in between.

Gas chromatographers can control several variables that affect their separations: carrier-gas flow, column temperature, column dimensions, and stationary phase chemistry. When faced with less than optimum resolution or separation speed, a strategy of changing just one variable at a time can be more productive than trying to hit the goal in one attempt. This month's GC Connections examines how to use such a plan to obtain better GC results.

bulk water.jpg

Recent advances in vacuum ultraviolet (VUV) spectroscopy have allowed for the application of this technology as a chemical detection platform for gas chromatography (GC). This technique is known as GC–VUV. A GC–VUV detector can produce highly characteristic absorbance spectra for nearly all chemical species in the wavelength region of 125–240 nm. This enables not only identification but also robust quantitation of a variety of compounds separable by gas chromatography, including water. This article describes the results of a pilot study focused on trace water determination in common organic solvents using an ionic liquid stationary phase GC column in a GC–VUV platform.

Separation scientists may seek an optimum spot between chromatographic performance required to obtain sufficient results quality, and the time and resources needed to do so. This installment of GC Connections examines the factors that control peak resolution - one of the main drivers of separation quality - and how chromatographers can use this to find an optimum between time, cost, and performance.