
This article describes the use of combined ion chromatography-mass spectrometry (IC–MS) and ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP–MS) to analyze potentially harmful compounds.

This article describes the use of combined ion chromatography-mass spectrometry (IC–MS) and ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP–MS) to analyze potentially harmful compounds.

Trace-level chlorinated hydrocarbon analyses using methods such as U.S. EPA Method 551.1 are important tools for assessing organochlorine contamination in water. The wide diversity of target organochlorine compounds can prove chromatographically challenging due mainly to their high volatility and limited retention. This application note shows the benefits of using an Agilent J&W HP-1ms Ultra Inert Capillary GC column as the primary column for detection in this dual-column analysis.

Human health not only depends on providing good medical care, but also on the priority given to prevent exposure to environmental and other health risks. Persistent Organic Pollutants (POPs) are organic compounds typically of anthropogenic origin that resist degradation and accumulate in the food chain and are associated with adverse effects on human health and the environment (1). Due to their toxicity to humans, at much lower concentration than other pollutants, it is important to monitor compounds like polychlorinated dioxins/furans PCDD/Fs, DLPCBs, BDEs, and PCNs. More sophisticated requirements are needed for their analysis. In the past, extraction and clean-up of POPs present in fish and biota samples were conducted with procedures such as Soxhlet extraction, acid digestion, and liquid-liquid extraction. The clean-up of these samples was accomplished through chromatographic columns using different types of adsorption media such as silica, alumina, and carbon. These analytical methods used for analysis..

In U.S. EPA Method 5035 there are two collection options for samples containing high levels of volatile organic compounds (VOCs). The first involves collecting a bulk soil sample in the field. In the lab, the bulk soil is dispersed in a water miscible solvent. Next, an aliquot of the solution is added to 5 mL of water and finally, the sample is purged. The second option is to collect a 5 g soil sample and add it to a pre-weighed vial containing a prescribed amount of water miscible solvent. An aliquot is then purged. Both of these processes are time consuming and have the potential to introduce human error both in the field and in the laboratory.

Polynuclear aromatic hydrocarbons (PAHs) are carcinogenic condensed ring aromatic compounds widely found as trace pollutants in waters, wastes, air particulates, soil, and foods. PAHs can be monitored routinely using HPLC with a combination of UV and fluorescence detection as prescribed in EPA methods 550.1, 610, and 8310. Conventional HPLC analysis of 19 PAHs typically requires 20 min and uses 25 mL of acetonitrile. However, there is a continual drive to improve productivity and reduce solvent consumption and waste in chemical analysis. Using ultra high pressure LC (UHPLC) with sub-2 μm particle-size columns, we demonstrate a 3-fold improvement in throughput and a 90% reduction of mobile phase solvent in the determination of 19 PAHs.

Most U.S. Environmental Protection Agency (U.S. EPA) methods for analysis of volatile organic compounds (VOCs) specify purging with helium for 11 min at 40 mL/min, making purge-and-trap (P&T) one of the biggest consumers of helium in a laboratory. Compared to helium, nitrogen is abundant, inert, and can be purchased at affordable prices.

Over the past 15 years, little has changed for the commercial environmental laboratory's ability to automate U.S. EPA Method 8260 for water and soil purge and trap analysis. As work loads have increased, reporting levels have decreased due to MS sensitivity improvements. However, it has become increasingly difficult for laboratories to run at high levels of productivity due to autosampler reliability, carryover, and internal standard reproducibility challenges. Each of these issues has been addressed in a new Centurion WS autosampler (see Figure 1) designed specifically for the commercial environmental laboratory.

Phenols are frequently present in water because of their widespread use in commercial products and because they are by-products of processes in petrochemical, pulp and paper, plastic, and glue manufacturing industries (1,2). The concentration of phenolic compounds in the waste discharges can be as high as 20 mg/L (2); however, phenol-containing pesticides and wood preservatives may cause significant health hazards even at mg/L levels (1). Consequently, it is important to monitor phenols and substituted phenols in environmental and biological samples. Liquid chromatography with electrochemical detection is one of the widely used methods due to its high selectivity and sensitivity for phenolic compounds. However, glassy carbon working electrodes, used in the electrochemical detection of phenols, often require polishing (3). This time-consuming and often poorly reproducible polishing can be avoided with disposable carbon electrodes, which offer comparable or better analytical performance (4).

Polybrominated diphenyl ethers (PBDE) are persistent environmental contaminants that are being extensively studied by environmental researchers worldwide. Their potential for toxicological impacts on humans and wildlife has made them a focal point of regulatory agencies. Their widespread use as flame retardants in electronics, household furniture, and many other building materials has lead to a need for analysis of many different sample matrices, including very complex environmental samples.

Perflourinated organic acids are ubiquitous and found at relatively low concentrations in the environment (1). Trifluoroacetic acid (TFA) is the persistent atmospheric degradation product of hydrofluorocarbons (HFCs) that are increasingly used as an alternative to banned, ozone-damaging chlorofluorocarbons (CFCs). However, debate surrounds the use of HFCs because of their potential to contribute to global warming and demonstrated toxicity to the environment (2). TFA is also widely used in pharmaceutical and biotechnology purification processes. It is crucial to monitor for TFA in environmental risk assessment and in products intended for human use. TFA can be measured by gas chromatography (GC) after sample preparation and chemical derivatization (3), ion chromatography (IC) (4), and capillary electrophoresis (5). This paper describes an IC-MS method to separate TFA from common anions based on Reagent-Freeâ„¢ IC (RFICâ„¢) technology with sensitive and selective mass spectrometric detection.

EPA Method 8260 is used to determine volatile organic compounds (VOC's) in a variety of matrices including ground and surface waters. This method is commonly used in environmental laboratories where gas chromatography (GC), mass spectrometry (MS) and purge and trap (P&T) technology are used for the analysis and subsequent detection of VOC's.

Carbonyl compounds, including low molecular weight aldehydes and ketones, have environmental and health concerns; for example, short-term exposure to aldehydes can irritate the eyes, skin, and upper respiratory tract. Motor vehicles emit reactive hydrocarbons that undergo photochemical oxidation in the atmosphere, which generates formaldehyde and other carbonyls. In addition, formaldehyde contributes to the formation of photochemical ozone. California Air Resources Board (CARB) Method 1004 (1) provides an analytical method for the automotive industry to monitor 13 carbonyl compounds in engine exhaust. US EPA Method TO-11A (2) and Method 8315 (3) monitor atmospheric formaldehyde and 14 other carbonyl compounds and are used for a variety of environmental and occupational health purposes. In these methods, carbonyl compounds are trapped as the dinitrophenylhydrazine (DNPH) derivatives before analysis by HPLC.

Purge and trap concentration (P&T) along with gas chromatographic analysis is a widely used method for the detection of volatile organic compounds (VOCs). This methodology was developed to achieve the high sensitivity necessary to determine VOCs in drinking water according to EPA Method 524.2. Research is now complete and the EPA currently proposes a revision to this method that may include a revised list of analytes including iodinated trihalomethanes, fuel oxygenates, and Contaminant Candidate List 3. This new method will be 524.3 and may include new parameter optimizations not previously permitted in 524.2 as well as the ability to use selective ion monitoring (SIM) analysis for troublesome compounds.

The Clean Air Act (CAA) (1) provides the U.S. Environmental Protection Agency authority to enforce regulations limiting emissions of volatile organic compounds (VOCs) and other air pollutants. The Compendium of Methods for the Determination of Toxic Compounds in Ambient Air includes a variety of sampling and analysis methods (2, 3), including use of single- and multi-sorbent tubes. Concentrating a large volume of sample onto a sorbent tube, followed by thermal desorption onto a GC column provides an efficient, cost-effective means of monitoring VOCs at parts per billion (ppb) or parts per trillion (ppt) levels.

The CUSTODIONâ„¢ solid phase microextraction (SPME) syringe was used to rapidly sample and concentrate volatile organic compounds (VOCs) from water in 5 s. The VOCs were analyzed quickly and reliably in approximately 70 s using the GUARDIONâ„¢ -7 portable capillary gas chromatograph toroidal ion trap mass spectrometer (GC-TMS).

A new technique, QuEChERS, standing for Quick, Easy, Cheap, Effective, Rugged, and Safe, is readily accepted by both the AOAC International and the Committee of European Normalization (CEN) for the pesticide residues in foods and agriculture products. Waters DisQuEâ„¢ Dispersive Sample Preparation Kit contains conveniently-packaged centrifuge tubes with pre-weighed sorbents and buffers designed for use with the AOAC official QuEChERS methods.

The purge-and-trap (P&T) technique for analysis of volatile organic compounds (VOCs) was pioneered in the 1970s at the United States Environmental Protection Agency (USEPA) research laboratory in Cincinnati. Many of the operational parameters developed during this time period are still included in USEPA methods. While these parameters still produce good analytical results, they do not take advantage of advances in instrumentation that enable analysis of emerging contaminants such as fuel oxygenates, and increased sample throughput.

MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the online adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers. MEPS devices are of glass and stainless steel construction allowing them to be fully immersed for sampling at depth or, alternatively, used at needle depth to avoid perturbing the stream from which the sample was drawn. An extension pole allowed MEPS to be used to sample back along pipes or down inspection vents. When sampling from drainage pits and open sumps, there was minimal requirement to remove grates to gain access. An extension pole also allowed sampling from outflows that were offensive and could be readily adapted for safe sampling of..

The CUSTODION™ SPME Syringes are a series of novel solid phase micro extraction syringes that incorporate Supelco Analytical's® (Bellefonte, Pennsylvania) SPME fiber technology. The SPME syringes are fabricated with injection-molded components and the device resembles a ball-point pen. The Supelco Analytical® SPME fiber assembly is housed inside the syringe.

Semivolatile analyses using methods similar to US EPA method 8270 (1) are important in environmental laboratories worldwide. A number of acidic compounds such as benzoic acid or 2,4-dinitrophenol and strong bases such as pyridine or benzidine are active species found in the semivolatile sample set. These highly polar species are particularly susceptible to adsorption into active surfaces in the sample flow path, including the column itself. System and column inertness are critical for effective analysis of these active chemical species.

Use of a modified QuEChERS sample preparation procedure was fully evaluated for identification and quantitation of pesticides in lettuce using gas chromatography and ion trap mass spectrometry. Final results compared favorably to the reporting and detection limits offered by several worldwide agencies, demonstrating a robust and reliable solution for analyzing pesticide residues in lettuce.

The second unregulated contaminant monitoring regulation (UCMR2) program was developed to monitor US drinking water sources for currently unregulated compounds. EPA Method 527 is categorized under List 1; Assessment Monitoring in the UCMR2 program. EPA Method 527 focuses on a wide range of semi volatile organic contaminants, including pesticides that were deferred during the first UCMR, flame retardants, and pyrethroid pesticides. This application for EPA Method 527 employs SPE with analysis by gas chromatography–mass spectrometry (GC–MS).

This application note describes a fast and sensitive LC–MS method using a Hypersil GOLD column on a Thermo Scientific LC–MS system for the quantitative analysis of two widespread PFCs, perfluorooctanoic acid (PFOA) and perfluorooctansulphonate (PFOS).

Mercury pollution mainly originates from industrial activities such as chlorine production, garbage incineration and above all coal-fueled power generation. The US Environmental Protection Agency (US EPA) considers mercury as highly toxic with a pronounced accumulative and persistent character.

MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the online adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers. MEPS devices are of glass and stainless steel construction allowing them to be fully immersed for sampling at depth or, alternatively, used at needle depth to avoid perturbing the stream from which the sample was drawn. An extension pole allowed MEPS to be used to sample back along pipes or down inspection vents. When sampling from drainage pits and open sumps, there was minimal requirement to remove grates to gain access. An extension pole also allowed sampling from outflows that were offensive and could be readily adapted for safe sampling of..

EPA Method 525.2 describes the procedure to determine low ppb levels of semi-volatile organic material in drinking water using solid phase extraction (SPE) or liquid-solid extraction (LSE) techniques. The City of Fort Worth, Water Department implemented an automated SPE process for the analysis of semi-volatiles by EPA Method 525.2, using the Atlantic "Certified for Automation" SPE Disk for EPA Method 525.2. Ethyl acetate, methanol, and water were used to condition the Atlantic disk prior to the extraction step. The extraction solvents used were a 1:1 mixture of methylene chloride and ethyle acetate. Extracts were then analyzed by GC–MS using a splitless injection technique.

Two of the most commonly occurring unpleasant odor-causing compounds in drinking water are geosmin and 2-methylisoborneol (MIB) (Figure 1). Geosmin is produced primarily by blue-green algae (cyanobacteria) and actinomycete bacteria, and MIB is produced by certain species of cyanobacteria, primarily Oscillatoria. Many environmental laboratories are required to detect these compounds as low as 1–3 ppt concentration and measure quantitatively at 5 ppt.

Dionex has developed a new standard for flow-through solvent extraction which allows accelerated solvent extraction (ASE®) of matrices that have undergone acid or alkaline pretreatment or digestion. The new ASE 150 and ASE 350 systems use extraction cells and post-cell solvent pathways constructed of Dionium™ material. This pH-hardened substance resists corrosion under acidic or alkaline conditions used in standard pretreatments, widening the scope of ASE applications and significantly expanding its capabilities.

The purge-and-trap (P&T) technique for analysis of volatile organic compounds (VOCs) was pioneered in the 1970s at the United States Environmental Protection Agency (USEPA) research laboratory in Cincinnati. Many of the operational parameters developed during this time period are still included in USEPA methods. While these parameters still produce good analytical results, they do not take advantage of advances in instrumentation that enable analysis of emerging contaminants such as fuel oxygenates, and increased sample throughput.

H-SRM provides excellent selectivity for accurate identification and quantification of pesticides in matrix, demonstrating high productivity for effective control at international maximum residue levels (MRLs).