Daniela Held

Daniela Held studied polymer chemistry in Mainz, Germany, and works for PSS – A part of Agilent as an R&D director in Mainz. She is also responsible for education and customer training.

Articles by Daniela Held

Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) columns are filled with porous particles differing in particle and pore sizes. Typical particle sizes in analytical GPC/SEC range from sub-2-µm particles applied in oligomer and protein separations to approximately 20 µm for separations of ultrahigh molar mass macromolecules (1,2). While the effect of combining columns of different pore sizes has previously been discussed in GPC/SEC Tips & Tricks (3,4), the effect of combining columns of different particle sizes has not been addressed before.

figure 1 L.png

The chemistry of samples analyzed using gel permeation chromatography/size-exclusion chromatography/gel filtration chromatography (GPC/SEC/GFC) is very diverse. Different chemistries of stationary phases are required to allow for true size separation. Several types of materials are available, all of which have their advantages and limitations. While silica‑based stationary phases are most common in high performance liquid chromatography (HPLC), for macromolecules polymer-based phases are popular.

figure 1 L1575997135133.png

The “greenest solution” is certainly using no solvent but gel permeation chromatography/size-exclusion chromatography (GPC/SEC) as a liquid chromatography (LC) technique requires the use of a mobile phase. The growing awareness of the need for more sustainable (greener) solutions has focused attention on environmentally- and health-friendly solvents and solutions.

Figure 1 L1565869979773.png

Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is the standard technique to determine the molar mass distribution of synthetic macromolecules. However, some kinds of polymers (for example, polyolefins) are often only soluble in special solvents and require high temperatures to be used during the analysis to keep the sample completely dissolved. Therefore, for the analysis of these polymers, dedicated high temperature GPC systems are used. This article will discuss the pros and cons of both high temperature GPC/SEC and ambient GPC/SEC.

figure 1 L.png

Molar mass distributions, molar mass averages, and polydispersity can be determined by gel permeation chromatography (GPC), size-exclusion chromatography (SEC), and gel filtration chromatography (GFC). This makes this technique indispensable for all scientists in quality control (QC) and R&D who have to work with large molecules. However, the technical terms used can be quite confusing for beginners. This instalment of Tips & Tricks explains more.

figure 1 L.png

The most commonly applied detector in gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is the differential refractive index detector, RI. How UV–vis detection, if applicable, adds true value to GPC/SEC applications is discussed in this instalment of Tips & Tricks.

The most commonly applied detector in gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is the differential refractive index detector, RI. How UV–vis detection, if applicable, adds true value to GPC/SEC applications is discussed in this instalment of Tips & Tricks.

figure 1 L.png

The refractive index (RI) detector is the most common detector in gel permeation chromatography/size-exclusion chromatography (GPC/SEC). The advantage of this universal detector is that it detects everything; the disadvantage is that it detects everything. This instalment of “Tips & Tricks” offers some advice when working with RI detectors.

tips and tricks.jpg

Combinations of detectors are often used in gel permeation chromatography/size-exclusion chromatography (GPC/SEC) to measure absolute molar masses or chemical compositions as a function of elution volume. Such multidetector setups require the correction of the delay volume between the detectors for correct data processing. This instalment of Tips & Tricks explains more.

figure 1 L.png

Molecular mass is one of the central parameters required for product registration. Compared to low molar mass substances, the molar mass determination of macromolecular products is more difficult because the product is a mixture of chains with different lengths and, therefore, molar masses. Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is the standard technique to separate macromolecules by size and to measure the complete molar mass distribution as well as the molar mass averages. This technique therefore provides crucial information for product registration, including REACH.

figure 1 L.png

Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is the standard method to separate samples by molecular size. In protein analysis, size-exclusion chromatography is either applied to detect and quantify aggregation, or to measure the complete molar mass distribution. However, method development is not trivial and the choice of suitable detection options is crucial.

figure 11486467668085.jpg

Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is used to determine molar mass averages and the complete molar mass distribution with just one injection. This is possible because GPC/SEC is a fractionating technique. The fractionation power allows the higher molar mass fraction to be characterized and more about low molar mass compounds such as oligomers, additives, or residual educts to be learned.

equation 1.jpg

Membranes play an important role in living species as well as in technical processes, including in human care (for example, in kidney treatment). This instalment of Tips & Tricks discusses gel permeation chromatography/size-exclusion chromatography (GPC/SEC) for membrane analysis.

figure 3.jpg

Experienced gel permeation chromatography/size-exclusion chromatography (GPC/SEC) users know that equilibration of the columns takes much longer than the time needed by the pump to produce a constant flow. An analysis in this phase would clearly yield different results from those achieved after complete equilibration of GPC/SEC columns. Furthermore, false but constant flow rates affect the molar masses derived from a GPC/SEC calibration curve. An internal flow marker can help to increase reproducibility and accuracy of GPC/SEC results.