All News

One of the initiatives that the SCSC oversees is the nomination process and awarding of the Satinder Ahuja Award for Young Investigators in Separation Science. Where are all of the young investigators in separation science? Certainly, those that have been honored to date have been worthy; however, there must be more eligible parties out there.

LCGC2_i1.jpg

Matrix-assisted laser desorption–ionization (MALDI) imaging mass spectrometry allows direct, in situ, label-free measurement of proteins, peptides, lipids, small-molecule drugs and their metabolites, and other chemicals in tissues. In a range of applications, the unique information generated by MALDI imaging can make a significant contribution to understanding factors such as molecular and metabolic mechanisms and the transport and localization of compounds or metabolites with human, animal, or plant species.

LCGC4_i1.gif

For lipid-containing food products like mayonnaise, determining nonvolatile lipid oxidation products, the precursor compounds for rancidity, makes it possible to predict product shelf life at an earlier stage in product development. A method based on normal-phase liquid chromatography with atmospheric pressure photoionization-mass spectrometry (LC–APPI-MS) was developed for this purpose.

LCGC5_i1.gif

A novel automated ultratrace gas chromatography–mass spectrometry (GC–MS) method has been developed that quantitates the eight toxaphene Parlar congeners designated in U.S. Environmental Protection Agency Method 8276. This method, combined with an efficient extraction, cleanup, and fractionation technique, makes is possible to extend instrument detection limits to the low parts-per-trillion concentration level for these toxaphene Parlar congeners.

Barriers.jpg

Comprehensive two-dimensional liquid chromatography (LC×LC) is a powerful technique for separating highly complex samples. However, the proliferation of this technique is hindered by a range of challenges, including the possible impact of the additional separation on the detection sensitivity, concerns that mobile phase incompatibility problems will limit the applicability, and the complexity of the system and associated method development costs. This article addresses these issues and describes how modern modulators and software tools are overcoming the barriers associated with this technique.

equation 1.png

The biomimetic gradient retention time measurements on C18, immobilized artificial membrane (IAM), human serum albumin (HSA), and acid-glycoprotein (AGP) stationary phases can be used to characterize compounds partitioning into phospholipids and proteins. The data obtained can then be used in equations to estimate the in vivo plasmaÐtissue distribution of the compounds measured. The plasma protein binding, brain tissue binding, and in vivo drug efficiency can also be calculated using the biomimetic chromatographic data.

figure 11527175783275.png

We explore the careers and achievements of the winners of LCGC’s 11th annual awards: Ronald E. Majors and Zachary S. Breitbach.

equation 11524063096904.png

This article introduces the development of an automated and versatile technique for solution viscosity determination of a wide range of polymeric materials in different solvents. Sample preparation is a tedious and error-prone process in viscosity determinations of polymeric materials, especially when elevated temperature or when hazardous solvents are required. This new approach automates sample preparation and injection to the viscometer detector, with benefits in efficiency and safety as well as in analysis precision. The dissolution conditions were studied and optimized to reduce thermal and oxidative degradation, which are detrimental to the accuracy of the observed viscosity.