LC–MS

Latest News


September 2006. Top-down and bottom-up are alternative strategies for protein identification and characterization by mass spectrometry. How do they fit into the world of proteomics? What are their implications for separation technology? These questions are addressed in this installment of "Directions in Discovery."

Q&A

This month's column explores the idea that despite the well-considered physics and engineering involved in mass spectrometer technology, it nonetheless seems that the uality of one's results are as much the product of art as they are of science.

i12_t-153453-1408695412315.gif

Co-occurrence of several mycotoxins (deoxynivalenol, zearalenone, T-2-toxin, HT-2 toxin) produced by field fungi, such as Fusarium graminearum and Fusarium culmorum, requires several analysis methods for their characterization. A reliable method for the determination of type A- and B-trichothecenes and zearalenone in cereal-based samples is presented. To achieve optimal mass spectrometric detection, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared. Best results were obtained with ESI by implementing a two-period switching for the ionization polarity. The limit of quantification differs for each individual substance within the range 1–10 ppb. Mean recoveries using a standardized clean-up procedure were in the 54–93% range.

i1-147841-1408698251100.jpg

In this initial installment of "MS - The Practical Art," a new series of columns is introduced that investigates various aspects of mass spectrometry (MS) from the perspective of some leading practitioners. Here, featured scientists Kathleen Cox and Timothy Baker discuss several MS technologies and strategies currently being applied to characterize drug candidates in early stage development.

"A well-prepared sample, a well-defined analytical goal, the appropriate use of accurate mass, reproducible retention times, and good instrument control generate unassailable data..."