Mass Spectrometry

Latest News


MSPA_Figure-1_web.jpg

Non-targeted metabolite profiling by ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC–MS) is a powerful technique to investigate the influence of genetic and environmental influence on metabolic phenotype in plants. The approach offers an unbiased and in-depth analysis that can reveal molecular markers of desirable phenotypic traits which can be complementary to genetic markers in plant breeding efforts. Here, the power of non-targeted metabolite profiling is illustrated in a study focused on the determination of molecular markers in malting barley that are predictive of desirable malting quality for brewing applications.

Table1_web-New-14452665574401445285421792.jpg

Is your swimming pool clean and safe? Recreational water illness, most commonly in the form of digestive tract illness or skin, ear, or respiratory infections, is often caused by water contamination. The authors present a robust method, using solid-phase extraction and high-resolution mass spectrometry, for monitoring swimming pool water.

Sheehan-figure01_web-New-1445370109039.jpg

When evaluating the performance of mass spectrometers, one needs to consider the best (or most meaningful) figure of merit to use; options include instrument detection limit (IDL) and signal-to-noise ratio (S/N). In the last 15 years, vendor specifications for S/N have increased from 10:1 to greater than 100,000:1. Does that accurately reflect improvements in mass spectrometers? Although there have been many significant changes, the change in S/N specifications has been far greater than the corresponding change in method detection limits (MDL). Under appropriate conditions, S/N is a meaningful standard, but the value of any S/N must be evaluated in context of the chromatography and sample. Factors influencing the validity of vendor S/N specifications are reviewed, and the statistical alternative of IDL is presented as a replacement that is more consistent with regulatory guidelines and a more relevant indicator of instrument performance.

Francois-figure-01_web-1-New-14452693443131445285426135.jpg

An analytical methodology for the characterization of the primary structure of biotherapeutic proteins using sheathless CE–ESI-MS-MS instrumentation is presented. For the first time, complete sequence coverage can be achieved using a bottom-up proteomic approach from a single analysis of a tryptic digest. In a biosimilarity assessment, a single amino acid substitution was detected.

MassSpec1_i3.gif

A new method was developed and validated using automated on-line solid-phase extraction (SPE) with tandem mass spectrometry (MS). Urine samples were enzyme-hydrolyzed and diluted before detection. The validated method was applied to positive authentic urine samples to evaluate concordance with high performance liquid chromatography (HPLC)–MS-MS results.

Bryan Vining from SGS Environmental Service in Wilmington, North Carolina, reveals some of the cutting-edge research his team has performed involving dioxin analysis, and proposes some future possibilities for the direction of this field.

i3.gif

The use of a mass spectrometer in quantitative analysis exploits its exquisite selectivity and sensitivity as a detector, allowing a signal to be ascribed to a particular chemical entity with high certainty, even when present in a sample at a low concentration. There are, however, some special considerations that are necessary when a mass spectrometer is used as a quantitative tool.

MassSpec3_i9_t-856308-1417773405174.gif

This article describes the development of a new data-independent acquisition (DIA) workflow for protein quantification that uses a mass spectrometer that combines three types of mass analyzers to achieve lower limits of detection (LOD), higher sensitivity, more accurate quantitative results, wider dynamic range, and better reproducibility than existing high-resolution accurate-mass (HRAM) tandem mass spectrometry (MS-MS) DIA workflows.